ENGINEERS SCIENTISTS PLANNERS

www.parecorp.com



June 15, 2011

Mr. Orlando Pacheco Town Administrator Town of Lancaster 695 Main Street Lancaster, MA 01523

#### RE: MA01561 Bartlet Pond Dam Rehabilitation Preliminary Dam Removal Feasibility Study Report Lancaster, Massachusetts (PARE Project No.:10177.01)

Dear Mr. Pacheco:

In accordance with our proposal, PARE has completed preliminary feasibility studies (PFS) of the potential existing conditions at the site which may have a significant impact upon the feasibility of a dam removal project for the Bartlet Pond Dam in Lancaster, Massachusetts.

The scope of the PFS included an evaluation of hydrologic and hydraulic impacts of dam removal, a quantification of the volume of sediment within the impoundment area, and characterizations and analyses of the sediment for contamination potential. Each of these studies and their impacts upon the feasibility of dam removal are discussed in more detail in the sections below.

#### Hydrologic/Hydraulic Impacts

Based upon the hydrologic model developed for the dam as part of the Phase II Evaluation, PARE completed additional flood routings to determine the impact of dam removal upon peak water surface elevations upstream of the dam location as well as within the downstream channel. The hydraulic evaluations considered peak routed elevations for a variety of peak storm flow events through both the conceptual dam breach and the culvert at Route 117 immediately downstream of the dam.

For the purposes of the evaluation, the dam breach was conceptually assumed to consist of a trapezoidal channel created through the dam embankment with an approximately 40-foot wide base at El. 265 and side slopes near 2H:1V. The following table summarizes the results of the hydraulic routings:

10 LINCOLN ROAD, SUITE 103, FOXBORO, MA 02035 T508-543-1755 F508-543-1881 8 BLACKSTONE VALLEY PLACE, LINCOLN, RI 02865 T401-334-4100 F401-334-4108



| Storm    | Peak          |                 | Pea           | k Elevation (feet)    |                  |
|----------|---------------|-----------------|---------------|-----------------------|------------------|
| Event    | Flow<br>(cfs) | Existing<br>Dam | Dam<br>Breach | Culvert<br>(Existing) | Culvert (Breach) |
| 1-in*    | -             | 272.0           | 265.0         | 263.8                 | 263.8            |
| 2-in*    | -             | 272.0           | 265.0         | 263.8                 | 263.8            |
| 2-year   | 64            | 273.3           | 265.2         | 263.9                 | 263.9            |
| 5-year   | 170           | 274.2           | 265.6         | 264.1                 | 264.1            |
| 10-year  | 298           | 274.4           | 266.1         | 264.3                 | 264.3            |
| 25-year  | 557           | 274.9           | 267.1         | 264.5                 | 264.5            |
| 50-year  | 932           | 275.7           | 268.5         | 264.7                 | 264.7            |
| 100-year | 1328          | 276.4           | 269.4         | 264.9                 | 264.9            |

\* Note: Hydrologic model indicated that low flows generated by the 1-inch and 2-inch storm events do not develop sufficient stream flow to be reflected in peak stream flow rates.

The modeled conditions indicate that impacts of dam removal upon downstream flood levels and flow rates appear to be negligible. Given the small storage capacity of the existing dam and impoundment, flood attenuation provided by the impoundment and dam are negligible. As such, flow rates pre- and post- dam removal are not anticipated to be significantly altered as a result of the dam removal. Peak water surface elevations within the former impoundment area post dam removal will be dependent upon actual geometry of the breach. However, based upon the completed routings and assumed breach characteristics, the maximum routed surface elevation will be low enough such that the location would not be considered a dam.

#### **Sediment Quantification**

On April 8, 2011, PARE Corporation personnel completed a series of probes and soundings to evaluate the presence and depth of sediment deposits within the limits of the impoundment area. The probes and soundings were completed utilizing weight lines to determine the top of sediment elevation and steel rods driven through sediment deposits to refusal on the apparent natural pond bottom. Each exploration was located by hand held GPS instrumentation with sub meter accuracy. Location of each probe along with top of sediment, bottom of sediment, and thickness of sediment deposit are shown on Figure 2: Sediment Survey.

Based upon this program, sediment deposits averaging approximately 3.5-feet thick were typically observed throughout the entire impoundment area with sediment thickness of between 1 to 2 feet in areas at the upstream end of the pond and isolated areas nearer to the shoreline. Maximum sediment deposit thickness was measured near 4.3 feet and minimum thickness was measured near 1.2 feet. The sediment generally consisted of organic silts with more than 30% fines.

Given the observed sediment thickness, generalized cross sections of the impoundment were developed. Utilizing average end volume calculation methodology, a total volume of roughly 14,000 cubic yards of sediment is estimated to be present within the impoundment area.



June 15, 2011

### Sediment Characterization

The sediment sampling program included two components: a review of available historical land use information for the watershed; and, collection and analysis of a sediment sample from within the impoundment. PARE reviewed Christopher Environmental Associates' report "Wekepeke Land Uses 1830-2008" for information on possible contaminants that could potentially be found in the Bartlett Pond watershed. Based on the information contained within this report, the predominant land use in the Bartlett Pond watershed has historically been and is currently agriculture. The report indicates historic and current use of herbicides, pesticides and fungicides associated with past and current agriculture. Given the prevalence of pesticide, herbicide, and fungicide use in the watershed, it is reasonable to suspect that these contaminants may be present in sediment within the impoundment, and therefore were included in PARE's sediment analysis program.

On April 8, 2011, PARE personnel collected a composite sample of sediment from behind the impoundment. Three core samples were collected at a single location in an area shortly upstream of the primary spillway where sediment appeared to be deepest. Sediment from the three cores was composited into a single sample for analysis. The sample was transported in laboratory-provided glassware with chain-of-custody documentation to New England Testing Laboratory, Inc. (NETL) of North Providence, Rhode Island for chemical and physical analysis. As recommended in Section 9.07(2)(b)(6) of the MA DEP 401 Water Quality Regulations and PARE's desktop due diligence, the sample was analyzed for the following parameters;

- Metals
  - o Arsenic
  - o Barium
  - o cadmium
  - o chromium
  - o Lead
  - o Mercury
  - o Selenium
  - o Silver

- Polynuclear aromatic hydrocarbons (PAHs);
- Polychlorinated biphenyl (PCBs);
- Extractable petroleum hydrocarbons (EPH);
- Total petroleum hydrocarbons (TPH);
- Volatile organic compounds (VOCs);
- Herbicides and Fungicides;
- Pesticides;
- Total volatile solids;
- Percent water; and
- Grain size analysis.

The results of the sieve analysis indicate that the composite sediment sample is primarily silt with approximately 72.7 percent material passing the #200 sieve.

PARE compared the analytical results to sediment screening criteria established in the MA DEP 401 Water Quality Regulations. After the dam is removed, the upstream brook will rechannelize and mobilize soft sediment. That sediment will be carried downstream and naturally redistributed. That condition would be similar to a dredge condition, and therefore would be jurisdictional under the 401 Water Quality Regulations. Under a dredge condition, the analytical results should be compared to Threshold Effects Concentration (TEC) criteria and Probable Effects Concentration (PEC) criteria as described in the *MA DEP Revised Sediment Screening Values, Interim Technical Update*.

One contaminant, arsenic at 18.9 mg/kg, exceeded its respective TEC value (9.79 mg/kg), but was below its PEC value (33.0 mg/kg). The MA DEP Revised Sediment Screening Values, Interim



*Technical Update* memorandum suggests that sediment contaminated with metals below their PEC values represent a condition of "no significant risk or harm" to the environment. Therefore, it does not appear as though the TEC exceedance for arsenic poses a significant risk at the site or warrant further action or investigation. No (0) other contaminants exceeded their respective TEC or PEC screening values. Results of the analyses are attached in Appendix B: Laboratory Testing Results.

#### **Recommendations / Conclusions**

Based upon the completed hydraulic modeling, it appears that minimal changes to flood levels and stream flows within the areas downstream of the dam would result from dam removal; flood levels within the former impoundment area would be directly related to the geometry of the proposed breach. As such, hydraulic and stream flow conditions appear favorable for dam removal.

A significant volume of sediment is present within the impoundment area, with deposits averaging approximately 3.5 feet in thickness and extending across a majority of the impoundment area. Dam removal would require that sediment subject to mobilization from stream flows be either stabilized or removed. Given the observed sedimentation at the site, it is anticipated that sediment removal from the alignment of the proposed/restored stream channel will be required to enable normal flows to pass through the stream channel without eroding sediment. Sediment beyond the restored stream channel could be stabilized in place through a combination of natural revegeation, bioengineering stabilization methods, traditional bank stabilization methods (i.e., riprap), and plantings.

The preliminary evaluation of sediment revealed that the sediment does not represent a significant threat to downstream receptors, in the event that sediment is remobilized, and does not represent a significant exposure risk to humans, in the event that sediment becomes exposed after the dam removal. These areas will, however, require stabilization to minimize and prevent mobilization of the accumulated sediments, and re-vegetation to re-establish wetland conditions.

At a minimum the exposed sediments should be seeded with a native wetland seed mix for initial stabilization. The development of the vegetation within the area should be closely monitored for several years with identified invasive species aggressively removed.

Complete reliance upon natural revegetation and/or wetland seed mix may not result in sufficient plant abundance and diversity within a time frame that would be acceptable to the numerous regulatory authorities with jurisdiction over the project. As such, a program of dense tree and shrub plantings may be necessary to satisfactorily revegetate the area. This type of program would provide the benefit of providing initial site stabilization and deterrence to colonization of the exposed sediments by invasive species. This program would also have a secondary benefits of improved wildlife habitat and site aesthetics.

As part of the planting program, the exposed sediments on the impoundment bottom would be densely planted with indigenous herbaceous, shrub, and/or tree species adapted to the post-removal water regime. Data developed as part of this study suggests that the impoundment bottom will likely support a seasonally flooded to seasonally saturated water regime, and the selected vegetation will need to be adapted to these conditions. In general, native vegetation classified as Facultative Wetland (FACW) or



wetter (Reed, 1988) should be considered as suitable plantings. The herbaceous layer is important in that it accounts for the greatest degree of initial stabilization.

The banks of the restored stream channel may be stabilized using bioengineering techniques. These may consist of such elements as protecting the embankment toes with coir logs or armor stone, installing live stakings, or installing erosion control matting over herbaceous seeding. The purpose of these treatments is provide initial scour protection as well as long term embankment protection and improved wildlife habitat.

Follow-up monitoring and maintenance of the restored areas will be necessary to ensure that the areas remain stable, that the selected vegetation is suitable for field conditions, and to prevent colonization by invasive species. A recommended monitoring schedule might consist of three to four visits during the first one or two growing seasons followed by semiannual visits for three more years. This schedule may need to be adjusted depending on the degree, to which control of invasive species may be necessary.

Based upon the results of these evaluations, dam removal appears to remain a feasible alternative for addressing dam safety deficiencies at the Bartlet Pond Dam. Given additional information obtained as part of theses evaluations, the scope of construction activities associated with a dam removal project are anticipated to include:

#### Phase I: Impoundment Area Restoration

Phase I of the work will restore the natural stream channel and vegetate areas of sediment exposed by draining the impoundment. By restoring the impoundment area prior to dam removal, sediment can be stabilized while limiting the potential for high flows from transporting sediment in the event of significant rainfall events. During the stabilization phase, high flows will be reimpounded, thereby reducing stream flow velocities and sediment transport migration. During Phase I, the dam will remain a jurisdictional structure in accordance with current dam safety regulations.

Phase I of the work may include:

- 1. Lowering the level of the impoundment through removal of controls at the spillway
- 2. Restoring a natural stream channel through the impoundment area including excavation of excess sediment, installation of bioengineered and/or traditional bank stabilization measures
- 3. Planting, seeding, and revegatation of the impoundment area, including monitoring and aggressive removal of invasive species.

#### Phase II: Dam Removal

Phase II of the work will consist of construction activities to remove the existing dam embankment, primary spillway, and portions of the overflow spillway. Proposed work may be consistent with the dam removal program described in the Phase II Report.

Prior to commencing dam removal activities, additional permitting and coordination will be required. These efforts may include:



Mr. Orlando Pacheco

-6-

June 15, 2011

1. Marthe Brilie

J. Matthew Bellisle, P.E.

Senior Vice President

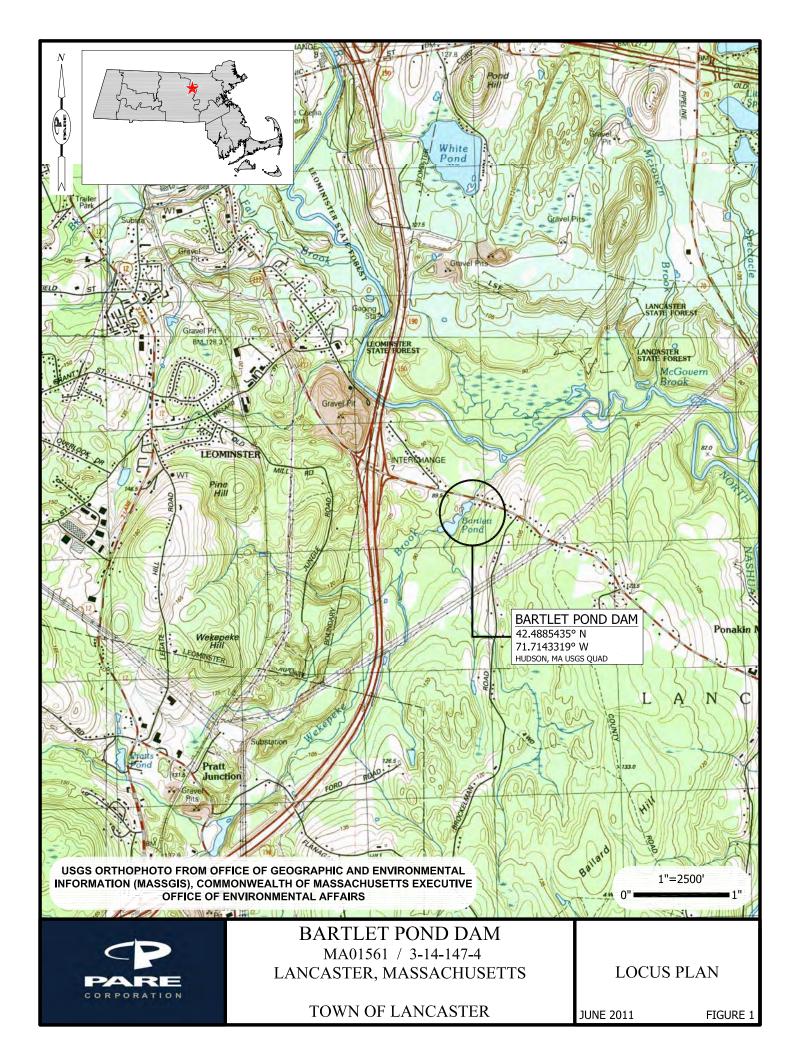
- 1. Additional sediment testing and analysis
- 2. Environmental permitting (as discussed in detail in the Phase II Report)
- 3. Public Coordination and Outreach

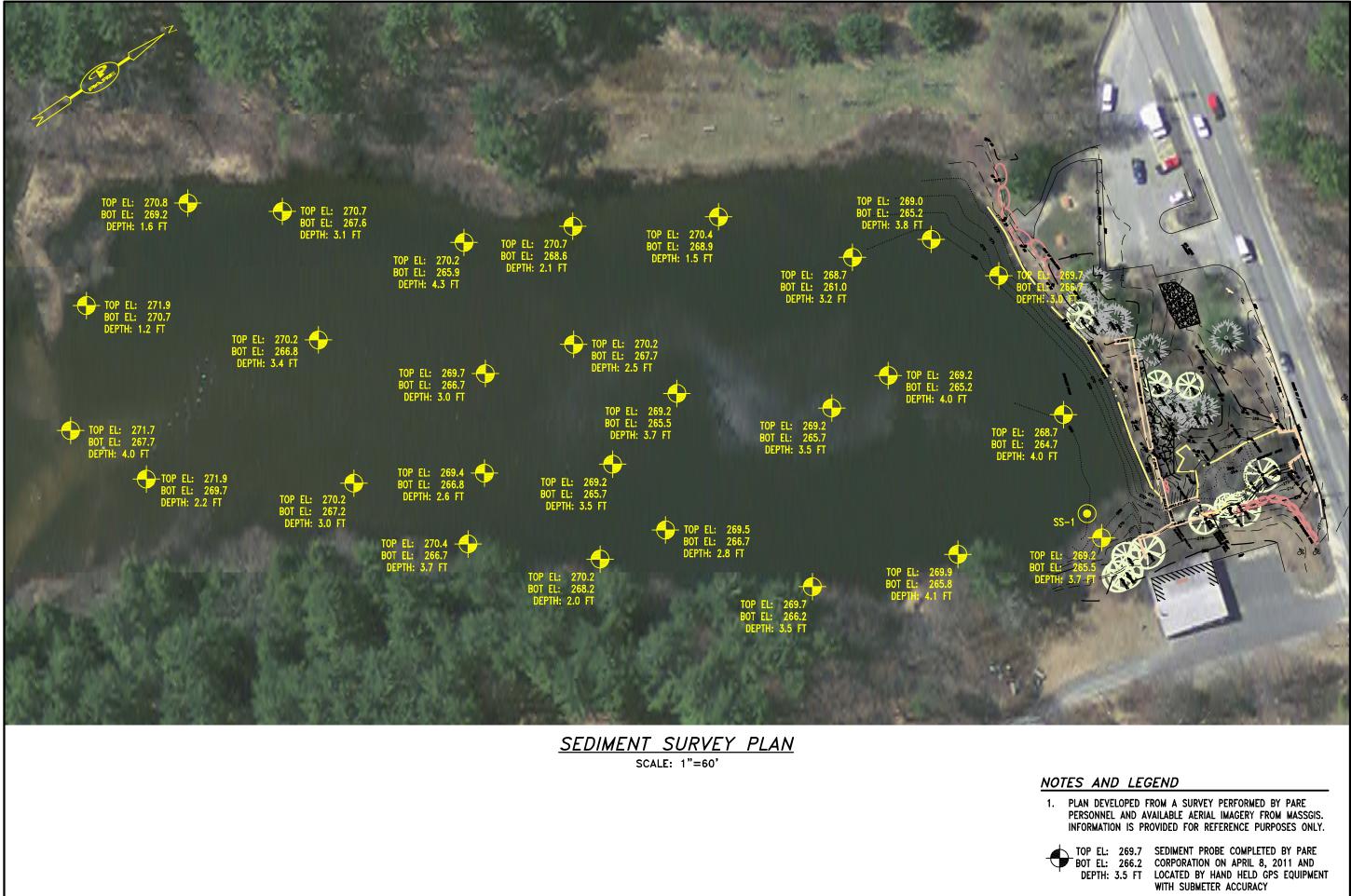
The attached conceptual opinion of costs presents the conceptual opinion of probable cost from the Phase II Report updated to reflect findings of this preliminary dam removal feasibility study.

We trust that this letter report and attachments provide sufficient information to assist the Town in evaluating the desired course of action to be taken to address dam safety concerns at the Bartlet Pond Dam. If you have any questions or need additional information, please contact me at 508.543.1755 or by email at aorsi@parecorp.com.

Sincerely,

PARE CORPORATION


for R. O.


Allen R. Orsi, P.E. Senior Project Engineer

Attachments:

Figure 1: Locus Plan Figure 2: Sediment Survey Plan Conceptual Dam Removal Opinion of Probable Cost Appendix A: Wekepeke Land Use 1830-2008 Appendix B: Laboratory Testing Results

Z:\JOBS\10 Jobs\10177.01 PFS - Barlet Pond Dam Removal\Bartlet\_PFS Report.doc





SEDIMENT SAMPLE LOCATION COLLECTED BY PARE ON APRIL 8, 2011

| <u>0"</u> B                                                                               | CORR<br>SourceAll<br>SourceAll<br>CORR<br>SourceAll<br>Calle An<br>GL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NTISTS -<br>OAD, SUI<br>, MA 020<br>43-1755<br>DUSTIME<br>HIDE | 1"<br>ON                                            |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
| BARTLET POND DAM                                                                          | MA01561 / 3-14-147-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LANCASTER, MASSACHUSETTS                                       | TOWN OF LANCASTER                                   |
| REVISION<br>PROJECT<br>DATE:<br>SCALE:<br>DESKINEI<br>CHECKED<br>DRAWN B<br>APPROVE<br>SL | NO:<br>DBY:<br>BBY:<br>CDBY:<br>DBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY:<br>CDBY: |                                                                | 10177.01<br>pril 2011<br>1"=60<br>АСЈ<br>ЈИВ<br>ЈИВ |





| PROJECT : Bartlet Pond Dam Removal | PROJECT NUMBER: 10177.01 |  |
|------------------------------------|--------------------------|--|
| SUBJECT: Opinion of Probable Cost  |                          |  |
| COMPUTATIONS BY: ACJ/ARO           | DATE: May/June 2011      |  |
| CHECK BY: JMB                      | DATE: June 2011          |  |

#### Conceptual Dam Removal Opinion of Probable Cost

| Item                                                                                                                                                                                 | Qty                        | Unit                                               | Unit Price                                                                          |                                              | Total                                                                                       | Source                                                                                                                                                                                   | Notes                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| General Bid Items                                                                                                                                                                    |                            |                                                    |                                                                                     |                                              |                                                                                             |                                                                                                                                                                                          |                                         |
| Portable Toilets<br>Project Superintendent<br>QC Plans<br>Submittals                                                                                                                 | 2<br>40<br>20<br>20        | MON<br>DAY<br>HRS<br>HRS                           | \$ 150.0<br>\$ 460.0<br>\$ 75.0<br>\$ 75.0                                          | ) \$<br>) \$                                 | 300.00<br>18,400.00<br>1,500.00<br>1,500.00                                                 | Engineers Judgment                                                                                                                                                                       | Assume \$45/hr labor & \$100/d per diem |
| Submittais<br>Schedules<br>Meetings<br>Subtotal                                                                                                                                      | 20<br>14<br>8              | HRS                                                | \$ 75.0<br>\$ 75.0<br>\$ 150.0                                                      | ) \$                                         | 1,050.00<br>1,050.00<br>1,200.00<br><b>23,950.00</b>                                        |                                                                                                                                                                                          | Assume 2hrs each @ \$75/hr              |
| Quality Control                                                                                                                                                                      |                            |                                                    |                                                                                     |                                              | <i>.</i>                                                                                    |                                                                                                                                                                                          |                                         |
| Proctor Tests<br>Concrete Sampling/Testing<br>Concrete Compression Tests<br>Sieve Analyses<br>Field Density Testing<br>Chemical Soil Tests<br>Chemical Soil Tests<br><b>Subtotal</b> | 0<br>0<br>0<br>10<br>1     | TEST<br>SET<br>TEST<br>TEST<br>DAY<br>TEST<br>TEST | \$ 225.0<br>\$ 400.0<br>\$ 30.0<br>\$ 100.0<br>\$ 500.0<br>\$ 1,000.0<br>\$ 1,000.0 | D \$<br>D \$<br>D \$<br>D \$<br>D \$<br>D \$ | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Laboratory Quote plus markup<br>Recent project bids<br>Laboratory Quote plus markup<br>Laboratory Quote plus markup<br>Recent project bids<br>Recent project bids<br>Recent project bids |                                         |
| Mobilization & Demolition<br>Mobilization                                                                                                                                            | 1                          | LS                                                 | \$ 7,000.0                                                                          | D \$                                         | 7,000.00                                                                                    | Engineers ludgment                                                                                                                                                                       |                                         |
| Access Improvements<br>Demobilization<br>Subtotal                                                                                                                                    | 1<br>1                     | LS<br>DAY<br>LS                                    | \$ 7,000.0<br>\$ 1,400.0<br>\$ 4,000.0                                              | ) \$                                         | 1,400.00<br>4,000.00<br><b>12,400.00</b>                                                    | Engineers Judgment<br>Means Crew B-7<br>Engineers Judgment                                                                                                                               | Site Access                             |
| Erosion Control                                                                                                                                                                      | 450                        | <b>F A</b>                                         | ¢ 10.0                                                                              |                                              | 4 000 00                                                                                    | Mass Weighted Did Drives 707.0                                                                                                                                                           |                                         |
| Hay bales<br>Silt Fence<br>Turbidity Barrier<br><b>Subtotal</b>                                                                                                                      | 150<br>300<br>40           | EA<br>LF<br>LF                                     | \$ 12.0<br>\$ 8.5<br>\$ 30.0                                                        | ) \$                                         | 1,800.00<br>2,550.00<br>1,200.00<br><b>5,600.00</b>                                         | Mass Weighted Bid Prices 767.8<br>697. Mass WAP<br>Recent project bids                                                                                                                   |                                         |
| Dewatering/Control of Water<br>Temporary Cofferdam<br>Cofferdam Maintenance<br>Bypass Piping<br>Subtotal                                                                             | 1<br>1<br>1                | LS<br>LS<br>LS                                     | \$ 25,000.0<br>\$ 10,000.0<br>\$ 10,000.0                                           | ) \$                                         | 25,000.00<br>10,000.00<br>10,000.00<br><b>45,000.00</b>                                     | Engineer's Estimate<br>Engineer's Judgment<br>Engineer's Judgment                                                                                                                        |                                         |
| R&D Existing Spillway<br>Demolition                                                                                                                                                  | 150                        | CY                                                 | \$ 150.0                                                                            | D \$                                         | 22,500.00                                                                                   | Engineer's Estimate                                                                                                                                                                      | Removal of existing dam                 |
| Disposal<br>Earth Excavation & Backfill<br>Subtotal                                                                                                                                  | 300<br>200                 | TON<br>CY                                          | \$ 130.0<br>\$ 40.0<br>\$ 30.0                                                      | ) \$                                         | 12,000.00<br>6,000.00<br><b>40,500.00</b>                                                   | Engineer's Estimate                                                                                                                                                                      | Around existing                         |
| Slope Protection                                                                                                                                                                     |                            |                                                    |                                                                                     |                                              |                                                                                             |                                                                                                                                                                                          |                                         |
| Armor Stone<br>Bedding Stone<br>Geotextile Filter Fabric<br><b>Subtotal</b>                                                                                                          | 100<br>50<br>120           | TON<br>TON<br>SY                                   | \$ 50.0<br>\$ 45.0<br>\$ 8.0                                                        | ) \$                                         | 5,000.00<br>2,300.00<br>1,000.00<br><b>8,300.00</b>                                         | Recent Project Costs<br>Recent Project Costs<br>Recent Project Costs                                                                                                                     | 3H:1V Sides, 5ft Crest (1 ft High)      |
| Stream Channel Restoration<br>Stream Channel Creation<br>Sediment Dewatering<br>Sediment Disposal<br>Bank Stabilization<br>Subtotal                                                  |                            | TON<br>LS<br>CY<br>LF                              | \$60.0<br>\$25,000.0<br>\$50.0<br>\$55.0                                            | ) \$<br>) \$                                 | 136,500.00<br>25,000.00<br>84,259.26<br>71,500.00<br><b>317,259.26</b>                      | Recent Project Costs                                                                                                                                                                     | Assumes riprapped bank; 50% protected   |
| Planting                                                                                                                                                                             |                            |                                                    |                                                                                     |                                              |                                                                                             |                                                                                                                                                                                          |                                         |
| Trees<br>Shrubs<br>Planting<br>Hydroseeding w/mulch and fertilizer<br><b>Subtotal</b>                                                                                                | 1600<br>800<br>2400<br>125 | EA<br>EA<br>EA<br>MSF                              |                                                                                     |                                              | 40,000.00<br>20,000.00<br>67,200.00<br>6,000.00<br><b>133,200.00</b>                        | New England Wetland Plants Inc Avg<br>New England Wetland Plants Inc Avg<br>10 Means 32 93 43<br>10 Means 32 92 19.14                                                                    |                                         |
| с                                                                                                                                                                                    | ONSTR                      | 25%                                                | SUBTOTA<br>ontract Bond<br>6 Contingend<br>N SUBTOTA                                | ls \$<br>cy \$                               | 465,000.00<br>14,000.00<br>117,000.00<br><b>596,000.00</b>                                  | (Rounded to the nearest \$1,000)                                                                                                                                                         | 3% of Project Subtotal                  |
| CONCEPTUAL OPINION                                                                                                                                                                   |                            | Fe                                                 | ering & Desig<br>easibility Stud<br>Permittir<br>n Observatio<br><b>DJECT COS</b>   | ly\$<br>Ig\$<br>In\$                         | 50,000.00<br>45,000.00<br>70,000.00<br>25,000.00<br><b>786,000.00</b>                       |                                                                                                                                                                                          |                                         |

APPENDIX A: Wekepeke Land Use 1830-2008

# Christopher Env.conmental

# Associates

252 Fort Pond Inn Road, Lancaster, MA 01523

(508) 331-4889 FAX (508) 331-4889

Email: tom.christopher @comcast.net

# Wekepeke Land Use 1830-2008

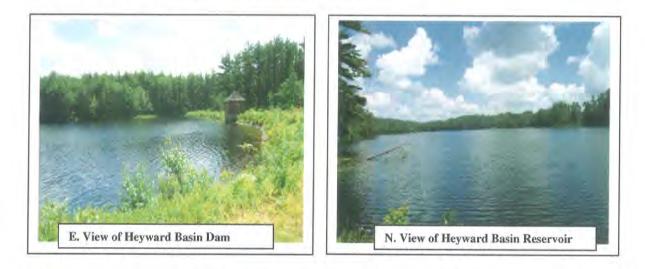
This paper will attempt to describe the changes in land uses and activities along the Wekepeke Brook in Sterling, Massachusetts from the period beginning in 1830 until the present day. The study area described in this paper begins at the headwaters of the Wekepeke in the area of Heywood Basin and extends to Pratt's Junction and MA Route 12. Information was gathered from records available from the Sterling Historical Society, the Clinton Historical Society, the Sholan Farms History, and interviews with Mrs. Karin Valeri of the Sterling Historical Society and Mr. Jody Murray of Upper North Row Road, Sterling, Massachusetts. I have also contributed with my own knowledge as a local resident and as an employee of farms in the area.

In 1830 the roads currently known as Upper and Lower North Row Roads extended from Pratt's Junction on the Leominster-Worcester Road (now MA Route 12) to Westminster and onto Barre and towns west. The Wekepeke Brook provided an important source of water power to residents of the area at this time and formed three separate mill ponds south of Lower North Row Road and west of the Worcester Road. Moving upstream and west from Pratt's Junction each mill provided separate functions within the community beginning with a grist mill owned by G. N. Burpee, a chair and shingle factory owned by E. Burpee, and a sawmill owned by J. Kendall. A store owned by J. Pratt, Jr. was located on the north side of the road.

Traveling west the land use was primarily agriculture owned by different members of the Pratt family and others including the Goodale, Tuttle, Lewis, and Endicott Families on the north side of the road. The town "poor farm" was also located on the north side of the road between the Pratt and Tuttle parcels.

In 1874 to the south of Lower North Row Road, at what is known as the Lynde Basin, was a chair factory owned by J. Lynde. Further west, Wekepeke Brook crosses Upper North Row Road just beyond the junction of what is known as Heywood Road. The Wekepeke has its source from two small un-named brooks draining Rocky Hill to the west and Bee Hill to the east in Leominster. In later years the west source was known as the "Devil's Pulpit" for the water gushing out of several large rock outcroppings slightly up gradient from the base of the hill. The other source captures some drainage from Rocky Hill and additional drainage from the west side Bee Hill. Most of this land was owned by C. Heywood who, in 1837, built a sawmill at the site of the existing dam of Heywood Basin Reservoir. By 1874 this enterprise continued with a house, additional storage buildings, barn and pasture for farm animals.

Adjacent land to the north along the Leominster boundary had been previously acquired by L. M. Hapgood in 1835 and by 1870 Hapgood road connecting the Hapgood parcel traveled past the Heywood property and joined Upper North Row Road. Land to the west of Hapgood road had


two other farms, one owned by L. Walker and another by A. Burpee, and extended from the base of Rocky Hill to Upper North Row Road. Both were subsistence type farms and examination of the tax records of the time show small homes, sheds, cattle, swine, chickens, etc. as taxable items.



Old stone foundations from these homes can still be found along Hapgood Road if one hunts through the overgrown pastures and forest.

The land along the Wekepeke was beginning to transition slowly from its early owners and away from its manufacturing base as the region approached the turn of the century. The availability of electric power made it possible to locate mills and manufacturing closer to urban centers with better access to roads and rail, and the need for water power on small streams was rapidly disappearing. The mills along the Wekepeke were relatively small, cottage-type industries usually attached to lands also suitable for a broad range of agricultural activities. Forests had been cut down to provide timber for the mills and the land was now more suitable for the production of food crops and dairy products as urban areas began to develop and grow in Clinton, Brookline, Worcester, and Boston. Francis Orr did keep a small electric-powered sawmill on the south side of Lower North Row Road from 1920 until the late 1960's. His son, Clayton Orr, became a caretaker at the Wekepeke Basin for the Town of Clinton and lived in a house on Heywood Road once owned by J. Putnam

In 1880 under the direction of Jonas E. Howe, water superintendent for the Town of Clinton, approximately 200 acres was purchased in Sterling for use as a public water supply for Clinton. The project acquired land from the Lynde, Heywood, Kendall, and Hapgood parcels to build a series of reservoirs that would service the present and future water needs. The location of the reservoirs was at an elevation much higher than the Town of Clinton and it was possible to install a pipe system that was gravity fed. The last dam at the Heywood Basin was constructed around 1926 and was the largest reservoir in the system.



By 1890 the land around the Wekepeke was changing dramatically as more intensive agricultural use was developed. The dairy and orchard production along Lower North Row Road grew substantially on farms owned by Homer Beauchene, E. Kendall Haywood, and others. On Upper North Row Road the Hapgood, Willard, Burpee, and Heywood families were also herding dairy cattle for the production of milk, cheese, and butter, however these parcels were eventually purchased by Town of Clinton to become part of the water supply system.

In 1910, at the junction of North Row and Heywood Roads, the Heywood orchard property was purchased by Chester Blodgett and he planted over 1,000 trees, mostly Baldwins and McIntosh, into cultivation. By 1912 pesticide applications intensified as San Jose scale and other insect populations began to thrive in the orchard monocultures, moving from parcel to adjacent parcels.



In 1912, just over the town line in Leominster, Paul Washburn bought the 90 acre Rogers Farm from D. E. Wheeler and two other parcels of 58 and 48 acres to establish the Sholan Farms on the west and east slopes of Bee Hill. This was used as a dairy farm until the 1920's but was converted to vegetable and orchard production shortly thereafter. Vegetables were grown between the rows of fruit trees until they matured to produce fruit. This parcel grew to become the second largest orchard in Massachusetts and a substantial portion of its land area drains directly into the Heywood Basin. Upon the death of Mr. Washburn the farm went through multiple ownerships until it was sold to the Possick family in

the early 1990's. It was purchased in 2001 by the City of Leominster and continues to operate as an orchard and farm today.

From 1930 until 1950 parcels were sold along Upper North Row Road, and for the most part, remained in some level of agricultural use. As you cross the Wekepeke, on the north side, the Cunningham family had dairy cows and operated a local slaughter house. Moving west the Ballard family raised chickens, and on the south side, Ephraim Murray had purchased land from Luther Hapgood to grow vegetable crops and eventually maintain a dairy herd.

In 1950 Myrton Baithrow opened a gravel pit on the south side of Upper North Row Road almost adjacent to the Wekepeke, and continued to extract material until the early 1970's. Residential home construction began to expand into the area in the 1980's, particularly in the form of "hobby farms" that kept a few acres for horses to graze. A new barn was constructed by B. Caisse in the area of the spent gravel pit, and he bred and raised many champion Morgan horses. The old Blodgett homestead was sold to the Clements and subsequently Ferguson families and they also kept stables of horses. On the north side of the road horses were kept by the Robinson family.

Today substantial residential development exists on both sides of Lower North Row Road as construction of large three and four bedroom homes has taken place. There are still several open rolling fields that are part of the old early parcels but they are under continual transient ownership, and prime for rapid residential development.

If one were to examine threats to the Wekepeke waters over time it would probably begin at the early mills when glues and other adhesive materials used to fasten chairs may have been toxic compounds. Adverse effects from agriculture are well-known and range from the runoff of

animal manures, siltation from exposed soil, to the toxic chemicals used for controlling insects in any form of intensive agriculture. This may still be an issue on the lands that have been or are currently in use for orchard crops, since they have had the most frequent and intense application of pesticides. Formulations applied on these orchard parcels have included chlorinated hydrocarbons, carbamates, organophosphates, and strong fungicides.

Not to be discounted or ignored are the earlier mentioned threats of expanded residential development. From this come an increase in pesticides from lawn fertilizer with its nitrogen and phosphorous loading, increased runoff of hydrocarbons and thermal loading from paved areas, and the potential for pollution from failed septic systems. While this type of development has not arrived *en masse* at Upper North Row Road yet, it is now a prime area for this type of land use.

There have been many changes to this area of the Wekepeke Brook Watershed since 1830, and each

Development On Lower North Row Road

change may have had significant effects on the residents of both North Row Roads. If one were to look at the entire timeline of land use, most of the change has been in the form of ownership. For the most part the land has gone from forest, to mill, to field, and now back to forest on many parcels.



Hobby Sheep Farm On Upper North Row Road

This, most likely, will not continue because parcels held in ownership for "the love of the land" by elders are shifting toward younger generations who will need capital to provide for their own financial wellbeing and security. The likelihood that younger owners will devise ways to live off the land is not realistic and new owners will probably be better equipped to manage money and assets in investment accounts, rather than milking a cow or throwing hay bales.

It will be necessary to consider appropriate planning and zoning tools to protect the waters of the Wekepeke in the years to come.

## **References:**

Atlas of Worcester County, Sterling Map. F. W. Beers. 1870

A Brief History of Sterling, Massachusetts. Sterling Town Committee. 1931.

Land Management of the Wekepeke. Worcester Polytechnical Institute, Department of Civil Engineering. April 1997.

Plan of Sterling Massachusetts Map. Surveyed by Moses Sawyer. 1830.

Sholan Farms History. Friends of Sholan Farms Website. 2008

.Sterling Vital Records. Town of Sterling, MA. Commonwealth Press. 1976.

Sterling, Massachusetts-A Pictorial History. Sterling Historical Society. 1981.

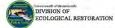
#### **Interviews:**

Karin Valeri. Sterling Historical Society. Tax Records and details of land ownership. November 22, 2008

Jody Murray, Upper North Row Road, Sterling, MA. Descendant of Ephraim Murray. Details of land use and ownership from 1930-present. November 29, 2008.

Respectfully Submitted,

Thomas J. Christopher


Thomas J. Čhristopher Principal

APPENDIX B: Laboratory Testing Results

| Parameter<br>(Important: Units listed by category below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAS No.                                                                                                                                                                                                        | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MCP S1 / GW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEC                                                                                                                                                                     | Benchmar<br>PEC                                                                                                                                                           | TEL                                                                                     | PEL                                                                      | Dam Impoundment Samples<br>SS-1                                                                                           | Downstream<br>Samples | Upstream Samples | Sta                                                                                                                    | ment Sample<br>itistics<br>Max Me                                                           |                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Metals [mg/kg]<br>Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Cadmium<br>Chromium (TOTAL)<br>Chromium (III)<br>Chromium (VI)<br>Copper<br>Lead<br>Mercury<br>Nickel<br>Selenium<br>Silver<br>Thallium<br>Vanadium<br>Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-36-0<br>7440-38-2<br>7440-39-3<br>7440-41-7<br>7440-43-9<br>7440-47-3<br>7440-47-3<br>7440-47-3<br>7440-50-8<br>7440-50-8<br>7439-97-6<br>7440-50-8<br>7440-22-4<br>7440-28-0<br>7440-22-2<br>7440-28-6   | 6020A<br>6010B<br>6020A<br>6020A<br>6010B<br>6010B<br>6010B<br>7471A<br>6010B<br>6020A<br>6020A<br>6020A<br>6020A<br>6020A<br>6020A<br>6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Human Health     20.0     20.0     20.0     1,000.0     30.0     1,000.0     30.0     300.0     300.0     20.0     300.0     300.0     20.0     300.0     20.0     20.0     20.0     20.0     20.0     20.0     20.0     20.0     20.0     400.0     100.0     8.0     600.0     2,500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fresh<br>NC<br>9.8<br>NC<br>1.0<br>43.4<br>NA<br>31.6<br>35.8<br>0.2<br>22.7<br>NC<br>NC<br>NC<br>NC<br>121.0                                                           | water<br>NC<br>33.0<br>NC<br>5.0<br>111.0<br>NA<br>NA<br>149.0<br>128.0<br>1.1<br>48.6<br>NC<br>NC<br>NC<br>NC<br>NC<br>459.0                                             | 7.2<br>0.7<br>52.3<br>18.7<br>30.2<br>0.1<br>15.9<br>0.7<br>124.0                       | 4.2<br>160.4<br>108.2<br>112.2<br>0.7<br>42.8<br>1.8                     | NA<br>18.9<br>111<br>NA<br>ND<br>28.4<br>NA<br>NA<br>28.4<br>ND<br>NA<br>28.4<br>ND<br>NA<br>15.4<br>NA<br>NA<br>NA<br>NA |                       |                  | 0<br>18.9<br>111<br>0<br>28.4<br>0<br>0<br>0<br>28.4<br>0<br>0<br>28.4<br>0<br>0<br>0<br>15.4<br>0<br>0<br>0<br>0<br>0 | 111<br>0<br>28.4<br>0<br>0<br>28.4<br>0<br>28.4<br>0<br>0<br>0                              | 0<br>18.9<br>111<br>0<br>28.4<br>0<br>0<br>28.4<br>0<br>0<br>28.4<br>0<br>0<br>15.4<br>0<br>0<br>0<br>15.4<br>0<br>0<br>0 |
| SVOCs (PAHs)[ug/kg]<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Denz[a]anthracene<br>Benzo[a]pyrene<br>Benzo[b]fluoranthene<br>Benzo[k,h]perylene<br>Benzo[k,fluoranthene<br>Chrysene<br>Dibenz[a,h]anthracene<br>Dibenzofuran<br>Fluoranthene<br>Fluorene<br>Indeno[1,2,3-cd]pyrene<br>Phenanthrene<br>Pyrene<br>2-Methylnaphthalene<br>Naphthalene<br>Total PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83-32-9<br>208-96-8<br>120-12-7<br>56-55-3<br>50-32-8<br>205-99-2<br>191-24-2<br>207-08-9<br>218-01-9<br>53-70-3<br>132-64-9<br>206-44-0<br>86-73-7<br>193-39-5<br>85-01-8<br>129-00-0<br>91-57-6<br>91-20-3   | 8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100<br>8270/8100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4,000.0<br>1,000,000.0<br>700.0<br>2,000.0<br>7,000.0<br>70,000.0<br>70,000.0<br>70,000.0<br>70,000.0<br>1,000,000.0<br>1,000,000.0<br>1,000,000.0<br>1,000,000.0<br>7,000.0<br>1,000,000.0<br>7,000.0<br>1,000,000.0<br>7,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.0<br>0,000.000. | NA<br>NA<br>NA<br>57.2<br>108.0<br>150.0<br>27.3<br>NA<br>166.0<br>33.0<br>NA<br>166.0<br>33.0<br>NA<br>423.0<br>77.4<br>NA<br>204.0<br>195.0<br>NC<br>176.0<br>1,610.0 | NA<br>NA<br>845.0<br>1,050.0<br>13,400.0<br>NA<br>1,290.0<br>260.0<br>NA<br>2,230.0<br>536.0<br>NA<br>1,170.0<br>1,520.0<br>NC<br>561.0<br>22,800.0                       | 6.7<br>5.9<br>107.8<br>6.2<br>112.8<br>21.2<br>86.7<br>152.7<br>20.2<br>34.6<br>1,684.1 | 846.0<br>134.6<br>1,493.5<br>144.4<br>543.5<br>1,397.6<br>201.3<br>390.6 | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N                                           |                       |                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                                                                                           |
| PCBs [ug/kg]<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1254<br>Aroclor-1260<br>Aroclor-1262<br>Aroclor-1262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                | 8082A<br>8082A<br>8082A<br>8082A<br>8082A<br>8082A<br>8082A<br>8082A<br>8082A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,000.0<br>2,000.0<br>2,000.0<br>2,000.0<br>2,000.0<br>2,000.0<br>2,000.0<br>2,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                        | NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                |                                                                                         |                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                    |                       |                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                           |
| Pesticides (ug/kg)<br>2,4:-DDD<br>4,4:-DDD<br>Sum DDD<br>2,4:-DDE<br>4,4:-DDE<br>2,4:-DDT<br>3,4:-DDT<br>2,4:-DDT<br>3,4:-DDT<br>3,4:-DDT<br>3,4:-DDT<br>5,2:-DT<br>4,4:-DDT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT<br>5,2:-DT | -<br>72-54-8<br>-<br>72-55-9<br>-<br>50-29-3<br>57-74-97<br>30-90-02<br>12789-03-6<br>60-57-1<br>72-20-8<br>115-29-7<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 8151a<br>8151a<br>8151a<br>8151a<br>8151a<br>8151a<br>8081a<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081b<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>8081a<br>80 | NC<br>4,000.0<br>NC<br>3,000.0<br>NC<br>3,000.0<br>NC<br>40.0<br>700.0<br>50.0<br>8,000.0<br>NC<br>500.0<br>NC<br>NC<br>NC<br>NC<br>NC<br>NC<br>NC<br>NC<br>NC<br>NC<br>NC<br>NC<br>NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NC<br>NC<br>4.9<br>NC<br>3.2<br>NC<br>5.3<br>0.5<br>NC<br>3.2<br>1.9<br>2.2<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA               | NC<br>NC<br>28.0<br>NC<br>31.3<br>NC<br>62.9<br>572.0<br>6.0<br>NC<br>17.6<br>61.8<br>207.0<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | 1.2<br>2.1<br>1.2<br>3.9<br>NC<br>2.3<br>0.7                                            | 374.2<br>4.8<br>51.7<br>NC                                               | NA<br>NA<br>ND<br>NA<br>ND<br>NA<br>NA<br>ND                                                                              |                       |                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                                                                                           |
| Herbicides (ug/kg)<br>2,4.D<br>2,4,5-TP (Silvex)<br>Dicamba<br>Dichloroprop<br>2,4,5 T<br>2,4 DB<br>Dinoseb<br>Dalapon<br>Pentachlorophenol<br>MCPA<br>MCPA<br>MCPP<br>Picloram<br>Actifluorfen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87-86-5                                                                                                                                                                                                        | 8151A<br>8151A<br>8151A<br>8151A<br>8151A<br>8151A<br>8151A<br>8151A<br>8151A<br>8151A<br>8151A<br>8151A<br>8151A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC<br>NC<br>NC<br>NC<br>NC<br>NC<br>3,000.0<br>NC<br>NC<br>NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                            | NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                              |                                                                                         |                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                |                       |                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   |
| VPH (mg/kg)<br>C5-C8 Aliphatic Hydrocarbons<br>C9-C12 Aliphatic Hydrocarbons<br>C9-C10 Aromatic Hydrocarbons<br>Unadjusted C5-C8 Aliphatic Hydrocarbons<br>Unadjusted C9-C12 Aliphatic Hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                | MADEP<br>MADEP<br>MADEP<br>MADEP<br>MADEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.0<br>1,000.0<br>1,000.0<br>NC<br>NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC<br>NC<br>NC<br>NC                                                                                                                                                    | NC<br>NC<br>NC<br>NC                                                                                                                                                      |                                                                                         |                                                                          | NA<br>NA<br>NA<br>NA                                                                                                      |                       |                  | 0<br>0<br>0<br>0<br>0                                                                                                  | 0<br>0<br>0<br>0                                                                            | 0<br>0<br>0<br>0<br>0                                                                                                     |
| VOCs (mg/kg)<br>Methyl tert-butyl ether (MTBE)<br>Benzene<br>Toluene<br>Ethylbenzene<br>m&p-Xylenes<br>o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1634-04-4<br>71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7<br>95-47-6                                                                                                                                           | MADEP<br>MADEP<br>MADEP<br>MADEP<br>MADEP<br>MADEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1<br>2.0<br>40.0<br>30.0<br>400.0<br>400.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC<br>NC<br>4.5<br>NC<br>NC<br>NC                                                                                                                                       | NC<br>NC<br>4.5<br>NC<br>NC<br>NC                                                                                                                                         |                                                                                         |                                                                          | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                          |                       |                  | 0<br>0<br>0<br>0<br>0<br>0                                                                                             | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 000000000000000000000000000000000000000                                                                                   |
| EPH (mg/kg)<br>C9-C18 Aliphatics<br>C19-C36 Aliphatics<br>C11-C22 Aromatics<br>Total Petroleum Hydrocarbons (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                | MADEP<br>MADEP<br>MADEP<br>3550C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,000.0<br>3,000.0<br>1,000.0<br>1,000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NC<br>NC<br>NC                                                                                                                                                          | NC<br>NC<br>NC                                                                                                                                                            |                                                                                         |                                                                          | ND<br>ND<br>ND<br>117                                                                                                     |                       |                  | 0<br>0<br>0<br>117                                                                                                     | 0<br>0<br>0<br>117                                                                          | 0<br>0<br>0<br>117                                                                                                        |
| Physical Characteristics<br>Total Organic Carbon (%)<br>Percent Water (%)<br>Grain Size Distribution (%)<br>Sieve No. 4<br>Sieve No. 3<br>Sieve No. 30<br>Sieve No. 50<br>Sieve No. 100<br>Sieve No. 200<br>Notes: 1) NA = Not Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                | ASTM D422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                           |                                                                                         |                                                                          | 7.87<br>76.26<br>100.00<br>98.50<br>98.50<br>98.50<br>93.90<br>72.70                                                      |                       |                  |                                                                                                                        |                                                                                             |                                                                                                                           |

DIVISION OF ECOLOGICAL RESTORATION 

Notes: 1) NA = Not Analyzed 2) ND = Not Detected



Prepared by: Massachusetts Department of Fish and Game Division of Ecological Restoration (DER) Updated July 2009 This table is prepared and offered by DER for the benefit of all parties pursuing river restoration projects within Massachusetts.



## **REPORT OF ANALYTICAL RESULTS**

## NETLAB Case Number W0408-23

Prepared for:

Attn: Tim Thies Pare Corporation 8 Blackstone Valley Place Lincoln, RI 02865

Report Date: April 18, 2011

Lab # RI010

NEW ENGLAND TESTING LABORATORY, INC. 1254 Douglas Avenue, North Providence, RI 02904 (401) 353-3420

|                    |                                                                                                                                                                                                                                               | Ма                                                               | ssDEP Analytica                                | al Protocol Certifi                                                            | cation Form                                              |                                   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|
| Labo               | oratory Na                                                                                                                                                                                                                                    | ame: New England                                                 | Testing Laboratory                             | ý                                                                              | Project #: 10177.01                                      |                                   |
| Proje              | ect Locati                                                                                                                                                                                                                                    | on: Bartlett Pond, I                                             | ancaster, MA                                   |                                                                                | RTN:                                                     |                                   |
|                    | Form pro<br>V0408-23                                                                                                                                                                                                                          |                                                                  | ns for the followi                             | ng data set: list Lab                                                          | ooratory Sample ID Nu                                    | mber(s):                          |
| Matrie             | ces: ~ Gr                                                                                                                                                                                                                                     | oundwater/Surface                                                | Water x Soil/Sed                               | liment ~ Drinking V                                                            | Vater ~ Air ~ Other:                                     |                                   |
| CAM                | Protoco                                                                                                                                                                                                                                       | <b>ol</b> (check all that a                                      | oply below):                                   | -                                                                              |                                                          |                                   |
| 8260<br>CAM        |                                                                                                                                                                                                                                               | 7470/7471 Hg<br>CAM III B <b>x</b>                               | MassDEP VPH<br>CAM IV A                        | 8081 Pesticides<br>CAM V B x                                                   | 7196 Hex Cr<br>CAM VI B                                  | MassDEP APH<br>CAM IX A           |
|                    | SVOC<br>II B <b>x</b>                                                                                                                                                                                                                         | 7010 Metals<br>CAM III C                                         | MassDEP EPH<br>CAM IV B x                      | 8151 Herbicides<br>CAM V C x                                                   | 8330 Explosives<br>CAM VIII A                            | TO-15 VOC<br>CAM IX B             |
|                    | Metals<br>III A <b>x</b>                                                                                                                                                                                                                      | 6020 Metals<br>CAM III D                                         | 8082 PCB<br>CAM V A <b>x</b>                   | 9014 Total<br>Cyanide/PAC<br>CAM VI A                                          | 6860 Perchlorate<br>CAM VIII B                           | X Other                           |
|                    | Affirmativ                                                                                                                                                                                                                                    | /e Responses to (                                                | Questions A throu                              | igh F are required f                                                           | for "Presumptive Cert                                    | ainty" status                     |
| Α                  | A Were all samples received in a condition consistent with those described on the Chain-of-<br>Custody, properly p reserved (including temperature) in the field or laboratory, and X Yes N<br>prepared/analyzed within method holding times? |                                                                  |                                                |                                                                                | X Yes No                                                 |                                   |
| в                  |                                                                                                                                                                                                                                               | e analytical method(<br>tocol(s) followed?                       | (s) and all associate                          | ed QC requirements s                                                           | specified in the selected                                | X Yes No                          |
| с                  |                                                                                                                                                                                                                                               |                                                                  |                                                | cal response actions s<br>formance standard no                                 | specified in the select ed n-conformances?               | X Yes No                          |
| D                  |                                                                                                                                                                                                                                               | Assurance and Qu                                                 |                                                |                                                                                | specified in CAM VII A, sition and Reporting of          | X Yes No                          |
| Е                  | a. VPH,<br>modifica                                                                                                                                                                                                                           |                                                                  | nods on ly: Was individual method(s            | ea ch method condu<br>) for a list of significant<br>ete analyte list reported |                                                          | X Yes No<br>Yes No                |
| F                  |                                                                                                                                                                                                                                               |                                                                  |                                                |                                                                                | -conformances identified<br>Questions A through E)?      | X Yes No                          |
| Res                | sponses                                                                                                                                                                                                                                       | to Questions G, H                                                | and I below are                                | required for "Presu                                                            | mptive Certainty" star                                   | tus                               |
| G                  | Were the protocol                                                                                                                                                                                                                             |                                                                  | r below all CAM repo                           | orting limits specified in                                                     | the selected CAM                                         | X Yes No <sup>1</sup>             |
|                    |                                                                                                                                                                                                                                               |                                                                  |                                                | inty" status may not ne<br>R 40. 1056 (2)(k) and WS                            | ecessarily meet the data us<br>SC-07-350.                | ability and                       |
| Н                  | Were all                                                                                                                                                                                                                                      | QC performance sta                                               | andards specified in t                         | he CAM protocol(s) ac                                                          | chieved?                                                 | X Yes No <sup>1</sup>             |
| I                  | Were res                                                                                                                                                                                                                                      | sults reported for the                                           | complete analyte lis                           | t specified in the select                                                      | ted CAM protocol(s)?                                     | Yes X No <sup>1</sup>             |
| <sup>1</sup> All I | negative r                                                                                                                                                                                                                                    | esponses must be a                                               | addressed in an atta                           | ached laboratory narra                                                         | ative.                                                   |                                   |
| respo              | nsible for                                                                                                                                                                                                                                    | ned, attest under the<br>obtaining the information and complete. | e pains and penaltie<br>ation, the material co | es of perjury that, bas<br>ntained in this analytic                            | sed upon my personal ir<br>cal report is, to the best of | nquiry of those<br>f my knowledge |
| Sign               | ature: <u>&amp;</u>                                                                                                                                                                                                                           | chOuter                                                          |                                                | Positio                                                                        | on: Laboratory Director                                  |                                   |
| Print              | ted Name                                                                                                                                                                                                                                      | Richard Warila                                                   |                                                | — Date: 4                                                                      | 4/18/2011                                                |                                   |

#### SAMPLES SUBMITTED and REQUEST FOR ANALYSIS:

The samples listed in Table I were submitted to New England Testing Laboratory on April 8, 2011. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is W0408-23.

Custody records are included in this report.

#### Site: Bartlet Pond, Lancaster, MA

#### **TABLE I, Samples Submitted**

| Sample ID | Date Sampled | Matrix | Analysis Requested |
|-----------|--------------|--------|--------------------|
|           |              |        |                    |
| SS#1      | 4/8/11       | Soil   | Table II           |

#### **TABLE II, Analysis and Methods**

| ANALYSIS                     | PREPARATION METHOD | DETERMINATIVE METHOD |
|------------------------------|--------------------|----------------------|
| Total Volatile Solids        | NA                 | 2540E                |
| PAHs                         | 3550C              | 8270D                |
| Pesticides                   | 3541               | 8081B                |
| Herbicides                   | 8151A              | 8151A                |
| Volatile Organic Compounds   | 5035               | 8260B                |
| Total Petroleum Hydrocarbons | 3550C              | 8100M                |
| EPH                          | NA                 | **                   |
| PCBs                         | 3541               | 8082A                |
| Percent Water                | NA                 | Gravimetric          |
| Grain Size*                  | NA                 | ASTM C136/C117       |
| Total Metals                 |                    |                      |
| Arsenic                      | 3050B              | 6010C                |
| Barium                       | 3050B              | 6010C                |
| Cadmium                      | 3050B              | 6010C                |
| Chromium                     | 3050B              | 6010C                |
| Lead                         | 3050B              | 6010C                |
| Mercury                      | NA                 | 7471B                |
| Selenium                     | 3050B              | 6010C                |
| Silver                       | 3050B              | 6010C                |
|                              |                    |                      |



\*Analysis subcontracted to Thielsch Engineering

These methods are documented in:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, USEPA/OSW.

\*\*Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MADEP.



#### **CASE NARRATIVE:**

#### Sample Receipt:

No trip blank or field blank was supplied. (This does not qualify the analytical results but does prevent conducting these SW-846 {Chapter 1, Section 3.4} QA Audits).

The samples were all appropriately cooled and preserved upon receipt.

The samples were received in the appropriate containers.

The chain of custody was adequately completed and corresponded to the samples submitted.

#### EPH:

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

#### Herbicides:

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

#### Metals:

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

An abbreviated compound list was reported per client request.

#### PCBs:

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

#### Pesticides:

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

#### Semi-volatile Compounds (PAHs):

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

#### Total Petroleum Hydrocarbons:

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

#### Metals:

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

### SS #1

| Parameter          | Result | Reporting Limit | Date Analyzed |
|--------------------|--------|-----------------|---------------|
|                    |        |                 |               |
| Percent Water, %   | 76.26  | NA              | 4/13/11       |
| Volatile Solids, % | 7.873  | 2.106           | 4/14/11       |

NA=Not Applicable

| Sample: SS #1          |                                | Analyst's Initials: NS |
|------------------------|--------------------------------|------------------------|
| Case No. W0408-23      |                                |                        |
| Date Collected: 4/8/11 |                                |                        |
| Sample Matrix: Soil    |                                |                        |
| Subject: TPH           |                                |                        |
| Prep Method: EPA 3550C | Date Extracted                 | Date Analyzed          |
| Analytical Method:     |                                |                        |
| EPA 8100 M             | 4/13/11                        | 4/14/11                |
|                        |                                |                        |
| Compound               | Concentration,<br>mg/kg* (ppm) | Reporting Limit        |
|                        |                                |                        |
| Total Petroleum        |                                |                        |
| Hydrocarbons           | 117                            | 82                     |
|                        |                                |                        |
| Surrogates:            |                                |                        |
| Compound               | % Recovery                     | Limits                 |
| Chlorooctadecane       | 101                            | 62-151                 |

\*Dry Weight Basis

# THIELSCH ENGINEERING, INC.

195 Frances Avenue, Cranston, RI 02910

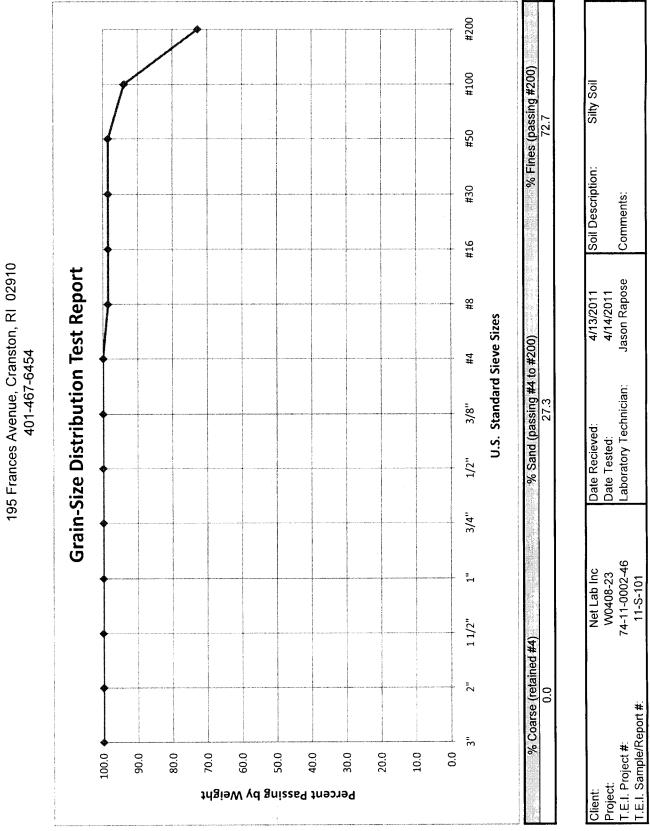
401-467-6454

#### Sieve Analysis Test Report

| Client:               | Net Lab Inc | Date Recieved:          | 4/13/2011     |
|-----------------------|-------------|-------------------------|---------------|
| Project:              | W0408-23    | Date Tested:            | 4/14/2011     |
| Client Sample I.D. #: | 406020      | T.E.I. Project #:       | 74-11-0002-46 |
| Soil Description:     | Silty Soil  | T.E.I. Sample/Report #: | 11-S-101      |
|                       |             | Laboratory Technician:  | Jason Rapose  |

| Total Moisture Content by Drying (D2216) |       |  |  |
|------------------------------------------|-------|--|--|
| Wet Mass (W):                            | 148.5 |  |  |
| Original Dry Mass (D):                   | 33.0  |  |  |
| Moisture Loss (W - D):                   | 115.5 |  |  |
| % Moisture (100 x (W - D) / D):          | 350.0 |  |  |

| Materials Finer than 75 µm Sieve by Washing |   |  |  |  |
|---------------------------------------------|---|--|--|--|
| ( C117)                                     | i |  |  |  |
| Dry Mass after wash (Dw):                   |   |  |  |  |
| Mass of fines lost by wash (D - Dw):        |   |  |  |  |
| % -75 μm Sieve (100 x (D - Dw)/D):          |   |  |  |  |


| Sieve Analysis of Fine and Coarse Aggregates(C136 /C117) |                                     |                                       |          |        |                             |                 |          |       |
|----------------------------------------------------------|-------------------------------------|---------------------------------------|----------|--------|-----------------------------|-----------------|----------|-------|
|                                                          | Mass per Sieve % Retained per Sieve |                                       |          |        |                             | Specification % |          |       |
| Sieve                                                    | Unwashed                            | Washed                                | Unwashed | Washed | Unwashed                    | Washed          | PR       | PP    |
| 3"                                                       | 0.0                                 |                                       | 0.0      |        | 100.0                       | <u> </u>        | <u> </u> |       |
| 32"                                                      | 0.0                                 |                                       | 0.0      |        | 100.0                       |                 |          |       |
| 1 1/2"                                                   | 0.0                                 |                                       | 0.0      |        | 100.0                       |                 |          |       |
| 1"                                                       | 0.0                                 | - <u> </u>                            | 0.0      |        | 100.0                       |                 |          |       |
| 3/4"                                                     | 0.0                                 |                                       | 0.0      |        | 100.0                       |                 |          | · · · |
| 1/2"                                                     | 0.0                                 | · · · · · · · · · · · · · · · · · · · | 0.0      |        | 100.0                       |                 |          |       |
| 3/8"                                                     | 0.0                                 |                                       | 0.0      |        | 100.0                       |                 |          |       |
| #4                                                       | 0.0                                 |                                       | 0.0      |        | 100.0                       |                 |          |       |
| #8                                                       | 0.5                                 |                                       | 1.5      |        | 98.5                        |                 |          |       |
| #16                                                      | 0.5                                 |                                       | 1.5      |        | 98.5                        |                 |          |       |
| #30                                                      | 0.5                                 |                                       | 1.5,     |        | , 98.5                      |                 |          |       |
| #50                                                      | 0.5                                 |                                       | 1:5      |        | 98.5                        |                 |          |       |
| #100                                                     | 2.0                                 |                                       | 6.1      |        | 93.9                        |                 |          |       |
| #200                                                     | 9.0                                 |                                       | 27.3     |        | 72.7                        |                 |          |       |
| Pan                                                      | 33.0                                |                                       | 100.0    |        | Calculate Fineness Modulus? |                 | No 🔻     |       |
| Sub Total                                                | 33.0                                |                                       |          |        |                             |                 |          |       |
| oss on Was                                               | h (D - Dw)                          | 0.0                                   |          |        |                             |                 |          |       |
| Total                                                    | 33.0                                |                                       |          |        |                             |                 |          |       |

Comments:

Jan C. Kom

Went Hell

| Tested By: Jason Rapose               | Reviewed by: Wendy Kerkhoff                           |                                       |  |  |  |
|---------------------------------------|-------------------------------------------------------|---------------------------------------|--|--|--|
| Cert. #: NICET Level I Cert. # 123709 | el I Cert. # 123709 Laboratory Supervisor             |                                       |  |  |  |
| Date: 4/14/2011                       | Date: 4/14/2011                                       |                                       |  |  |  |
| Results Within Specification Limits:  |                                                       | Results Outside Specification Limits: |  |  |  |
|                                       | 5                                                     |                                       |  |  |  |
|                                       | 979<br>- 2022<br>- 2014<br>- 2014<br>- 2014<br>- 2014 | 4                                     |  |  |  |
| CTS-S-01, Rev. 0<br>2/11/2011         | 4                                                     |                                       |  |  |  |



THIELSCH ENGINEERING, INC 195 Frances Avenue, Cranston, RI 02910

# RESULTS: EXTRACTABLE PETROLEUM HYDROCARBONS

Results for EPH analysis are presented in the following section. Each page is electronically signed.

#### APPENDIX 3: REQUIRED EPH DATA REPORTING FORMAT/INFORMATION

#### SAMPLE INFORMATION

| Matrix                | Aqueous X Soil Sediment Other:                    |
|-----------------------|---------------------------------------------------|
| Containers            | X Satisfactory Broken Leaking:                    |
| Aqueous Preservatives | $\underline{X}$ N/A _ pH $\leq$ 2 _ pH>2 Comment: |
| Temperature           | X Received on Ice X Received at 4 ° C Other:      |
| Extraction Method     | Water: Soil: Soxhlet                              |

#### EPH ANALYTICAL RESULTS

| Method for Rai                           | nges: MADEP EPH 98-1              |      | Client ID         | <b>SS</b> #1 |
|------------------------------------------|-----------------------------------|------|-------------------|--------------|
| Method for Tar                           | get Analytes:                     |      | Lab ID            | W0408-23     |
| EPH Surrogate                            | Standards                         |      | Date Collected    | 4/8/11       |
| Aliphatic: Chi                           | lorooctadecane                    |      | Date Received     | 4/8/11       |
| Aromatic: o-T                            |                                   |      | Date Extracted    | 4/14/11      |
|                                          | tion Surrogates                   |      | Date Analyzed     | 4/15/11      |
| 2-Fluorobiph                             | -                                 |      | Dilution Factor   | 1X           |
| 2-Bromonaph                              |                                   |      | % Moisture (soil) | 76.3         |
|                                          | GET ANALYTE                       | RL   | Units             |              |
| Unadjusted C1                            | 1-C22 Aromatics <sup>1</sup>      | 40.8 | mg/Kg             | <40.8        |
|                                          | Naphthalene                       | 0.20 | mg/Kg             | < 0.20       |
| Diesel PAH                               | 2-Methylnaphthalene               | 0.20 | mg/Kg             | <0.20        |
| Analytes                                 | Phenanthrene                      | 0.20 | mg/Kg             | < 0.20       |
|                                          | Acenaphthylene                    | 0.20 | mg/Kg             | <0.20        |
|                                          | Acenaphthene                      | 0.20 | mg/Kg             | <0.20        |
|                                          | Fluorene                          | 0.20 | mg/Kg             | < 0.20       |
|                                          | Anthracene                        | 0.20 | mg/Kg             | < 0.20       |
|                                          | Fluoranthene                      | 0.20 | mg/Kg             | < 0.20       |
| Other                                    | Pyrene                            | 0.20 | mg/Kg             | <0.20        |
| Target PAH                               | Benzo(a)anthracene                | 0.20 | mg/Kg             | <0.20        |
| Analytes                                 | Chrysene                          | 0.20 | mg/Kg             | <0.20        |
| -                                        | Benzo(b)fluoranthene              | 0.20 | mg/Kg             | < 0.20       |
|                                          | Benzo(k)fluoranthene              | 0.20 | mg/Kg             | <0.20        |
|                                          | Benzo(a)pyrene                    | 0.20 | mg/Kg             | <0.20        |
|                                          | Indeno(1,2,3-cd)pyrene            | 0.20 | mg/Kg             | <0.20        |
|                                          | Dibenzo(a,h)anthracene            | 0.20 | mg/Kg             | <0.20        |
|                                          | Benzo(g,h,i)perylene              | 0.20 | mg/Kg             | <0.20        |
| C9-C18 Alipha                            | atic Hydrocarbons <sup>1</sup>    | 40.8 | mg/Kg             | <40.8        |
|                                          | hatic Hydrocarbons <sup>1</sup>   | 40.8 | mg/Kg             | <40.8        |
|                                          | natic Hydrocarbons <sup>1,2</sup> | 40.8 | mg/Kg             | <40.8        |
|                                          | ogate % Recovery                  |      |                   | 93           |
|                                          | ogate % Recovery                  |      |                   | 71           |
|                                          | gate Acceptance Range             |      |                   | 40-140%      |
| Fractionation S                          | Surrogate % Recovery              |      |                   | 77           |
|                                          | Surrogate % Recovery              |      |                   | 77           |
| Fractionation Surrogate Acceptance Range |                                   |      | 1                 | 40-140%      |

#### CERTIFICATION

| Were all QA/QC procedures REQUIRED by the EPH Method followed?                           | <u>X</u> Yes | No-Details Attached    |
|------------------------------------------------------------------------------------------|--------------|------------------------|
| Were all performance/acceptance standards for the required QA/QC procedures achieved?    | <u>X</u> Yes | No-Details Attached    |
| Were any significant modifications made to the EPH method, as specified in Section 11.3? | <u>X</u> No  | _ Yes-Details Attached |

*I* attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

| SIGNATURE: Balance                  | POSITION: Laboratory Director . |
|-------------------------------------|---------------------------------|
| PRINTED NAME: <u>Richard Warila</u> | DATE: <u>4/18/2011</u>          |

#### APPENDIX 3: REQUIRED EPH DATA REPORTING FORMAT/INFORMATION

#### SAMPLE INFORMATION

| Matrix                | Aqueous X Soil Sediment Other:           |
|-----------------------|------------------------------------------|
| Containers            | SatisfactoryBrokenLeaking:               |
| Aqueous Preservatives | $X N/A pH \le 2 pH > 2$ Comment:         |
| Temperature           | Received on Ice Received at 4 ° C Other: |
| Extraction Method     | Water: Soil: Soxhlet                     |

#### EPH ANALYTICAL RESULTS

|                | nges: MADEP EPH 98-1                                                            |      | Client ID         | Method Blank |
|----------------|---------------------------------------------------------------------------------|------|-------------------|--------------|
| Method for Tar | get Analytes:                                                                   |      | Lab ID            | W0408-23     |
| EPH Surrogate  | Standards                                                                       |      | Date Collected    | NA           |
| Aliphatic: Chl | orooctadecane                                                                   |      | Date Received     | NA           |
| Aromatic: o-T  | erphenyl                                                                        |      | Date Extracted    | 4/14/11      |
| EPH Fractionat | ion Surrogates                                                                  |      | Date Analyzed     | 4/15/11      |
| 2-Fluorobiphe  | enyl                                                                            |      | Dilution Factor   | 1X           |
| 2-Bromonaph    | thalene                                                                         |      | % Moisture (soil) | NA           |
| RANGE/TAR      | GET ANALYTE                                                                     | RL   | Units             |              |
| Unadjusted C11 | I-C22 Aromatics <sup>1</sup>                                                    | 10.0 | mg/Kg             | <10.0        |
|                | Naphthalene                                                                     | 0.25 | mg/Kg             | <0.25        |
| Diesel PAH     | 2-Methylnaphthalene                                                             | 0.25 | mg/Kg             | <0.25        |
| Analytes       | Phenanthrene                                                                    | 0.25 | mg/Kg             | <0.25        |
|                | Acenaphthylene                                                                  | 0.25 | mg/Kg             | <0.25        |
|                | Acenaphthene                                                                    | 0.25 | mg/Kg             | <0.25        |
|                | Fluorene                                                                        | 0.25 | mg/Kg             | <0.25        |
|                | Anthracene                                                                      | 0.25 | mg/Kg             | <0.25        |
|                | Fluoranthene                                                                    | 0.25 | mg/Kg             | <0.25        |
| Other          | Pyrene                                                                          | 0.25 | mg/Kg             | <0.25        |
| Target PAH     | Benzo(a)anthracene                                                              | 0.25 | mg/Kg             | <0.25        |
| Analytes       | Chrysene                                                                        | 0.25 | mg/Kg             | <0.25        |
| ·              | Benzo(b)fluoranthene                                                            | 0.25 | mg/Kg             | <0.25        |
|                | Benzo(k)fluoranthene                                                            | 0.25 | mg/Kg             | <0.25        |
|                | Benzo(a)pyrene                                                                  | 0.25 | mg/Kg             | <0.25        |
|                | Indeno(1,2,3-cd)pyrene                                                          | 0.25 | mg/Kg             | <0.25        |
|                | Dibenzo(a,h)anthracene                                                          | 0.25 | mg/Kg             | <0.25        |
|                | Benzo(g,h,i)perylene                                                            | 0.25 | mg/Kg             | <0.25        |
| C9-C18 Alipha  | atic Hydrocarbons <sup>1</sup>                                                  | 10.0 | mg/Kg             | <10.0        |
|                | natic Hydrocarbons <sup>1</sup>                                                 | 10.0 | mg/Kg             | <10.0        |
|                | natic Hydrocarbons <sup>1,2</sup>                                               | 10.0 | mg/Kg             | <10.0        |
|                | ogate % Recovery                                                                |      |                   | 94           |
| Aromatic Surro | ogate % Recovery                                                                |      |                   | 104          |
|                | ate Acceptance Range                                                            |      |                   | 40-140%      |
|                | Surrogate % Recovery                                                            |      |                   | 106          |
|                | Surrogate % Recovery                                                            |      |                   | 99           |
|                | Surrogate Acceptance Range                                                      |      |                   | 40-140%      |
|                | Range data exclude concentrations of an omatic Hydrocarbons exclude the concent |      |                   | that range   |

#### CERTIFICATION

| Were all QA/QC procedures REQUIRED by the EPH Method followed?                           | <u>X</u> Yes | No-Details Attached  |
|------------------------------------------------------------------------------------------|--------------|----------------------|
| Were all performance/acceptance standards for the required QA/QC procedures achieved?    | <u>X</u> Yes | No-Details Attached  |
| Were any significant modifications made to the EPH method, as specified in Section 11.3? | <u>X</u> No  | Yes-Details Attached |

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

| SIGNATURE: Color                    | POSITION: Laboratory Director . |
|-------------------------------------|---------------------------------|
| PRINTED NAME: <u>Richard Warila</u> | DATE: <u>4/18/2011</u>          |

| Spike Recovery and RPD Summary Report - SOIL<br>Method : C:\HPCHEM\1\METHODS\EPHALI1.M (Chemstation Integrator)<br>Title :<br>Last Update : Thu Mar 24 10:52:54 2011<br>Response via : Initial Calibration |                                                                        |                                                                                 |                                                                                              |                                                                                        |                                                                                     |                                                                                   |                                                                                                                          |                                                                                 |                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Non-Spiked Sample:                                                                                                                                                                                         | J041510                                                                | ). D                                                                            |                                                                                              |                                                                                        |                                                                                     |                                                                                   |                                                                                                                          |                                                                                 |                                                                                                                                          |
| Spike<br>Sample                                                                                                                                                                                            |                                                                        |                                                                                 |                                                                                              |                                                                                        | Spi ke<br>Dupl i                                                                    | e<br>cate s                                                                       | Sampl                                                                                                                    | e                                                                               |                                                                                                                                          |
| File ID : J041511.D   J041512.D   Sample : LES HX 4-14   LESD HX 4-14   Acq Time: 15 Apr 20111 2:28 pm   15 Apr 20111 2:56 pm                                                                              |                                                                        |                                                                                 |                                                                                              |                                                                                        |                                                                                     | 5 pm                                                                              |                                                                                                                          |                                                                                 |                                                                                                                                          |
| Compound                                                                                                                                                                                                   | Sampl e<br>Conc                                                        | Spi ke<br>Added                                                                 | Spi ke<br>Res                                                                                | Dup<br>Res                                                                             | Spi ke<br>%Rec                                                                      | Dup<br>%Rec                                                                       | RPD                                                                                                                      | QC<br>RPD                                                                       | Limits<br>% Rec                                                                                                                          |
| Nonane<br>Decane<br>Dodecane<br>Tetradecane<br>Hexadecane<br>Octadecane<br>Nonadecane<br>Ei cosane<br>Docosane<br>Tetracosane<br>Hexacosane<br>Octacosane<br>Tri acontane<br>Hexatri acontane              | $\left \begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$ | 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>4 | 19<br>25<br>29<br>32<br>39<br>42<br>38<br>42<br>40<br>39<br>38<br>39<br>38<br>39<br>38<br>39 | 18<br>22<br>25<br>31<br>38<br>41<br>34<br>38<br>37<br>37<br>37<br>37<br>37<br>36<br>37 | 48<br>62<br>73<br>81<br>97<br>106<br>94<br>106<br>100<br>97<br>96<br>97<br>96<br>98 | 44<br>55<br>63<br>78<br>95<br>102<br>85<br>96<br>94<br>92<br>92<br>93<br>91<br>93 | 9<br>11<br>14<br>3<br>2<br>4<br>10<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 30-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140 |

# - Fails Limit Check

EPHALI 1. M Mon Apr 18 10: 30: 34 2011

| Spike Recovery and RPD Summary Report - SOIL<br>Method : C:\HPCHEM\2\METHODS\ARO.M (Chemstation Integrator)<br>Title :<br>Last Update : Tue Mar 22 08:56:03 2011<br>Response via : Initial Calibration                                                                                                                      |                                                                                                                                                                                             |                                                                                 |                                                                                                    |                                                                                                    |                                                                                                    |                                                                                               |                                                                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-Spiked Sample: F041508.D                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |                                                                                 |                                                                                                    |                                                                                                    |                                                                                                    |                                                                                               |                                                                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Spi ke<br>Sampl e                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                             |                                                                                 |                                                                                                    | Spike<br>Duplicate Sample                                                                          |                                                                                                    |                                                                                               |                                                                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| File ID : F041509.D<br>Sample : LES 4-14 ME<br>Acq Time: 15 Apr 2011 6:18 pm                                                                                                                                                                                                                                                |                                                                                                                                                                                             |                                                                                 |                                                                                                    |                                                                                                    | F041510.D<br>  LESD 4-14 ME<br>  15 Apr 2011 7:04 pm                                               |                                                                                               |                                                                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Compound S                                                                                                                                                                                                                                                                                                                  | Sample<br>Conc                                                                                                                                                                              | Spi ke<br>Added                                                                 | Spi ke<br>Res                                                                                      | Dup<br>Res                                                                                         | Spi ke<br>%Rec                                                                                     | Dup<br>%Rec                                                                                   | RPD                                                                                               | QC<br>RPD                                                                       | Limits<br>% Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Naphthal ene<br>2 methyl naphthal ene<br>acenaphthyl ene<br>Acenaphthene<br>fl uorene<br>phenanthrene<br>Anthracene<br>Fl uoranthene<br>Pyrene<br>Benzo(a)anthracene<br>Chrysene<br>Benzo(b)fl uoranthene<br>Benzo(k)fl uoranthene<br>Benzo(a)pyrene<br>Indeno(123cd)pyrene<br>Di benzo(ah)anthracen<br>Benzo(ghi)peryl ene | $\begin{array}{c} 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \end{array}$ | 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>4 | 23<br>24<br>25<br>36<br>28<br>28<br>27<br>30<br>34<br>35<br>30<br>35<br>33<br>30<br>25<br>37<br>31 | 25<br>26<br>27<br>39<br>29<br>30<br>29<br>31<br>38<br>35<br>32<br>34<br>32<br>30<br>23<br>41<br>31 | 58<br>61<br>63<br>90<br>70<br>70<br>68<br>75<br>86<br>88<br>74<br>88<br>82<br>74<br>62<br>93<br>77 | 62<br>67<br>97<br>72<br>76<br>73<br>77<br>95<br>88<br>80<br>84<br>81<br>74<br>57<br>104<br>79 | 7<br>6<br>8<br>3<br>8<br>7<br>3<br>9<br>0<br>7<br>4<br>2<br>0<br>7<br>4<br>2<br>0<br>7<br>10<br>2 | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | $\begin{array}{c} 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\ 40-140\\$ |

# - Fails Limit Check

ARO. M

Mon Apr 18 11:17:12 2011



# **RESULTS: HERBICIDES**

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

| Sample: SS #1          |                |                 |  |  |
|------------------------|----------------|-----------------|--|--|
| Case No. W0408-23      |                |                 |  |  |
| Date Collected: 4/8/11 |                |                 |  |  |
| Sample Matrix: Soil    |                |                 |  |  |
| Subject: Herbicides    | Date Extracted | Date Analyzed   |  |  |
| Prep Method: EPA 8151A | 4/14/11        | 4/15/11         |  |  |
| Method: EPA 8151A      |                |                 |  |  |
|                        |                |                 |  |  |
| Compound               | Concentration  | Reporting Limit |  |  |
| 1                      | ug/kg* (ppb)   |                 |  |  |
| 2,4-D                  | N.D.           | 210             |  |  |
| 2,4,5-TP (Silvex)      | N.D.           | 210             |  |  |
| Dicamba                | N.D.           | 210             |  |  |
| Dichloroprop           | N.D.           | 210             |  |  |
| 2,4,5 T                | N.D.           | 210             |  |  |
| 2,4 DB                 | N.D.           | 210             |  |  |
| Dinoseb                | N.D.           | 210             |  |  |
| Dalapon                | N.D.           | 210             |  |  |
| Pentachlorophenol      | N.D.           | 210             |  |  |
| МСРА                   | N.D.           | 210             |  |  |
| MCPP                   | N.D.           | 210             |  |  |
| Picloram               | N.D.           | 210             |  |  |
| Acifluorfen            | N.D.           | 210             |  |  |
|                        |                |                 |  |  |
| Surrogates:            |                |                 |  |  |
| Compound               | % Recovery     | Limits          |  |  |
| DCMA                   | 92             | 30-150          |  |  |

\*Dry Weight Basis

| Sample: Method Blank   |                              |                 |  |  |
|------------------------|------------------------------|-----------------|--|--|
| Case No. W0408-23      |                              |                 |  |  |
| Date Collected: NA     |                              |                 |  |  |
| Sample Matrix: Soil    |                              |                 |  |  |
| Subject: Herbicides    | Date Extracted               | Date Analyzed   |  |  |
| Prep Method: EPA 8151A | 4/14/11                      | 4/15/11         |  |  |
| Method: EPA 8151A      |                              |                 |  |  |
| Compound               | Concentration<br>ug/kg (ppb) | Reporting Limit |  |  |
| 2,4-D                  | N.D.                         | 50              |  |  |
| 2,4,5-TP (Silvex)      | N.D.                         | 50              |  |  |
| Dicamba                | N.D.                         | 50              |  |  |
| Dichloroprop           | N.D.                         | 50              |  |  |
| 2,4,5 T                | N.D.                         | 50              |  |  |
| 2,4 DB                 | N.D.                         | 50              |  |  |
| Dinoseb                | N.D.                         | 50              |  |  |
| Dalapon                | N.D.                         | 50              |  |  |
| Pentachlorophenol      | N.D.                         | 50              |  |  |
| MCPA                   | N.D.                         | 50              |  |  |
| MCPP                   | N.D.                         | 50              |  |  |
| Picloram               | N.D.                         | 50              |  |  |
| Acifluorfen            | N.D.                         | 50              |  |  |
| Surrogates:            |                              |                 |  |  |
| Compound               | % Recovery                   | Limits          |  |  |
| DCMA                   | 73                           | 30-150          |  |  |

### HERBICIDES LABORATORY CONTROL SPIKE AND LCS DUPLICATE RESULTS

| Date Extracted:   |                   |               |                |                    |                |                |                       |           |                  |
|-------------------|-------------------|---------------|----------------|--------------------|----------------|----------------|-----------------------|-----------|------------------|
| Date Analyzed:    |                   |               |                |                    |                |                |                       |           |                  |
| Compound          | LCS<br>True Value | LCS<br>Result | Recovery,<br>% | LCSD<br>True Value | LCSD<br>Result | Recovery,<br>% | Recovery<br>QC Limits | RPD,<br>% | RPD<br>QC Limits |
| Dalapon           | 1.000             | 0.435         | 44             | 1.000              | 0.461          | 46             | 40-140                | 5.8       | 30.0             |
| Dicamba           | 1.000             | 0.660         | 66             | 1.000              | 0.658          | 66             | 40-140                | 0.3       | 30.0             |
| Dichloroprop      | 1.000             | 0.697         | 70             | 1.000              | 0.659          | 66             | 40-140                | 5.6       | 30.0             |
| 2,4-D             | 1.000             | 0.766         | 77             | 1.000              | 0.783          | 78             | 40-140                | 2.2       | 30.0             |
| 2,4,5-TP (Silvex) | 1.000             | 0.773         | 77             | 1.000              | 0.775          | 78             | 40-140                | 0.3       | 30.0             |
| 2,4,5-T           | 1.000             | 0.677         | 68             | 1.000              | 0.681          | 68             | 40-140                | 0.6       | 30.0             |
| 2,4-DB            | 1.000             | 0.793         | 79             | 1.000              | 0.762          | 76             | 40-140                | 4.0       | 30.0             |
| Dinoseb           | 1.000             | 0.519         | 52             | 1.000              | 0.523          | 52             | 40-140                | 0.8       | 30.0             |
| Surrogate         |                   |               | % Recover      | y                  | Limits         |                |                       |           |                  |
| DCPA              | LCS               |               | 82             |                    | 30-150         |                |                       |           |                  |
|                   | LCSD              |               | 82             |                    | 30-150         |                |                       |           |                  |

New England Testing Laboratory, Inc.



# **METALS RESULTS**

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Metals Analysis Department certifies that the results included in this section have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.





| Case Number:    | W0408-23 |        |
|-----------------|----------|--------|
| Sample ID:      | SS #1    |        |
| Date collected: | 4/8/11   |        |
| Matrix          | SOIL     |        |
| Solids, %       | 23.74    | -      |
| Sample Type:    | Total    | -<br>- |

Analyst JC/AM

|           |            | Preparative | Analytical |        | Reporting | Detection |       | Date of     | Date     |
|-----------|------------|-------------|------------|--------|-----------|-----------|-------|-------------|----------|
| Parameter | CAS Number | Method      | Method     | Result | Limit     | Limit     | Units | Preparation | Analyzed |
|           |            |             |            |        |           |           |       |             |          |
| Arsenic   | 7440-38-2  | 3050B       | 6010C      | 18.9   | 2.70      | 2.70      | mg/kg | 4/12/11     | 4/14/11  |
| Barium    | 7440-39-3  | 3050B       | 6010C      | 111    | 1.35      | 1.35      | mg/kg | 4/12/11     | 4/14/11  |
| Cadmium   | 7440-43-9  | 3050B       | 6010C      | ND     | 1.35      | 1.35      | mg/kg | 4/12/11     | 4/14/11  |
| Chromium  | 7440-47-3  | 3050B       | 6010C      | 28.4   | 1.35      | 1.35      | mg/kg | 4/12/11     | 4/14/11  |
| Lead      | 7439-92-1  | 3050B       | 6010C      | 28.4   | 1.35      | 1.35      | mg/kg | 4/12/11     | 4/14/11  |
| Mercury   | 7439-97-6  | NA          | 7471B      | ND     | 0.260     | 0.260     | mg/kg | 4/14/11     | 4/14/11  |
| Selenium  | 7782-49-2  | 3050B       | 6010C      | ND     | 2.70      | 2.70      | mg/kg | 4/12/11     | 4/14/11  |
| Silver    | 7440-22-4  | 3050B       | 6010C      | 15.4   | 1.35      | 1.35      | mg/kg | 4/12/11     | 4/14/11  |

ND indicates not Detected

All results are reported on a dry weight basis.



Analyst JC/AM

### METALS RESULTS

| Sample ID:   | Preparation Blan | ık |
|--------------|------------------|----|
| Matrix       | SOIL             |    |
| Solids, %    | 100              |    |
| Sample Type: | Total            |    |

|           |            | Preparative | Analytical |        | Reporting | Detection |       | Date of     | Date     |
|-----------|------------|-------------|------------|--------|-----------|-----------|-------|-------------|----------|
| Parameter | CAS Number | Method      | Method     | Result | Limit     | Limit     | Units | Preparation | Analyzed |
|           |            |             |            |        |           |           |       |             |          |
| Arsenic   | 7440-38-2  | 3050B       | 6010C      | ND     | 0.67      | 0.67      | mg/kg | 4/12/11     | 4/14/11  |
| Barium    | 7440-39-3  | 3050B       | 6010C      | ND     | 0.33      | 0.33      | mg/kg | 4/12/11     | 4/14/11  |
| Cadmium   | 7440-43-9  | 3050B       | 6010C      | ND     | 0.33      | 0.33      | mg/kg | 4/12/11     | 4/14/11  |
| Chromium  | 7440-47-3  | 3050B       | 6010C      | ND     | 0.33      | 0.33      | mg/kg | 4/12/11     | 4/14/11  |
| Lead      | 7439-92-1  | 3050B       | 6010C      | ND     | 0.33      | 0.33      | mg/kg | 4/12/11     | 4/14/11  |
| Mercury   | 7439-97-6  | NA          | 7471B      | ND     | 0.067     | 0.067     | mg/kg | 4/14/11     | 4/14/11  |
| Selenium  | 7782-49-2  | 3050B       | 6010C      | ND     | 0.67      | 0.67      | mg/kg | 4/12/11     | 4/14/11  |
| Silver    | 7440-22-4  | 3050B       | 6010C      | ND     | 0.33      | 0.33      | mg/kg | 4/12/11     | 4/14/11  |

ND indicates not Detected

All results are reported on a dry weight basis.



### LABORATORY CONTROL SAMPLE RECOVERY

|            |            |        |       |             | Inte   | rnal   |               |
|------------|------------|--------|-------|-------------|--------|--------|---------------|
| Parameter  | True Value | Result | Units | Recovery, % | LCL, % | UCL, % | Date Analyzed |
| <b>.</b> - | 12.2       | 11.2   | /1    | 07          | 00     | 100    | A /1 A /1 1   |
| Arsenic    | 13.3       | 11.3   | mg/kg | 85          | 80     | 108    | 4/14/11       |
| Barium     | 66.7       | 63.4   | mg/kg | 95          | 80     | 112    | 4/14/11       |
| Cadmium    | 66.7       | 59.2   | mg/kg | 89          | 80     | 110    | 4/14/11       |
| Chromium   | 66.7       | 58.6   | mg/kg | 88          | 80     | 114    | 4/14/11       |
| Lead       | 66.7       | 55.0   | mg/kg | 82          | 80     | 114    | 4/14/11       |
| Mercury    | 0.133      | 0.144  | mg/kg | 108         | 80     | 120    | 4/14/11       |
| Selenium   | 13.3       | 11.2   | mg/kg | 84          | 80     | 111    | 4/14/11       |
| Silver     | 33.3       | 34.4   | mg/kg | 103         | 80     | 120    | 4/14/11       |



## **RESULTS: PCBs**

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

| Sample: SS #1                |                               | Analyst's Initials: NS |
|------------------------------|-------------------------------|------------------------|
| Case No.: W0408-23           |                               |                        |
| Date Collected: 4/8/11       |                               |                        |
| Sample Matrix: Soil          |                               |                        |
| Subject: PCBs                | Date Extracted                | Date Analyzed          |
| Prep Method: EPA 3541        | 4/14/11                       | 4/14/11                |
| Analytical Method: EPA 8082A |                               |                        |
| Compound                     | Concentration<br>ug/kg* (ppb) | Reporting Limit        |
| Aroclor-1221                 | N.D.                          | 204                    |
| Aroclor-1232                 | N.D.                          | 204                    |
| Aroclor-1016/1242            | N.D.                          | 204                    |
| Aroclor-1248                 | N.D.                          | 204                    |
| Aroclor-1254                 | N.D.                          | 204                    |
| Aroclor-1260                 | N.D.                          | 204                    |
| Aroclor-1262                 | N.D.                          | 204                    |
| Aroclor-1268                 | N.D.                          | 204                    |
| Surrogates:                  |                               |                        |
| Compound                     | % Recovery                    | Limits                 |
| TCMX                         | 44                            | 39-120                 |
| DCBP                         | 55                            | 34-140                 |

\*Dry Weight Basis



| Sample: Method Blank         |                              | Analyst's Initials: NS |
|------------------------------|------------------------------|------------------------|
| Case No.: W0408-23           |                              |                        |
| Date Collected: NA           |                              |                        |
| Sample Matrix: Soil          |                              |                        |
| Subject: PCBs                | Date Extracted               | Date Analyzed          |
| Prep Method: EPA 3541        | 4/14/11                      | 4/14/11                |
| Analytical Method: EPA 8082A |                              |                        |
| Compound                     | Concentration<br>ug/kg (ppb) | Reporting Limit        |
| Aroclor-1221                 | N.D.                         | 100                    |
| Aroclor-1232                 | N.D.                         | 100                    |
| Aroclor-1016/1242            | N.D.                         | 100                    |
| Aroclor-1248                 | N.D.                         | 100                    |
| Aroclor-1254                 | N.D.                         | 100                    |
| Aroclor-1260                 | N.D.                         | 100                    |
| Aroclor-1262                 | N.D.                         | 100                    |
| Aroclor-1268                 | N.D.                         | 100                    |
| Surrogates:                  |                              |                        |
| Compound                     | % Recovery                   | Limits                 |
| TCMX                         | 51                           | 39-120                 |
| DCBP                         | 59                           | 34-140                 |

| Sample Matrix: Soil             |                  |        |          |               |
|---------------------------------|------------------|--------|----------|---------------|
| Subject: PCB                    | Date Extracted   |        |          | Date Analyzed |
| Prep Method: EPA 3541           | 4/14/11          |        |          | 4/14/11       |
| Analytical Method:<br>EPA 8082A |                  |        |          |               |
| Compound                        | Amount<br>Spiked | Result | Recovery | Recovery      |
|                                 | mg/kg            | mg/kg  | %        | Limits        |
| Aroclor 1016                    | 0.500            | 0.334  | 67       | 46-130        |
| Aroclor 1260                    | 0.500            | 0.317  | 63       | 55-130        |
| Surrogates:                     |                  |        |          |               |
| Compound                        | % Recovery       | Limits |          |               |
| TCMX                            | 49               | 39-120 |          |               |
| DCBP                            | 58               | 34-140 |          |               |

### PCB Laboratory Control Spike





## **RESULTS: PESTICIDES**

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.

| Sample: SS #1                |                               | Analyst's Initials: NS |
|------------------------------|-------------------------------|------------------------|
| Case No.: W0408-23           |                               |                        |
| Date Collected: 4/8/11       |                               |                        |
| Sample Matrix: Soil          |                               |                        |
| Subject: Pesticides          | Date Extracted                | Date Analyzed          |
| Prep Method: EPA 3541        | 4/14/11                       | 4/15/11                |
| Analytical Method: EPA 8081B |                               |                        |
| Compound                     | Concentration<br>ug/kg* (ppb) | Reporting Limit        |
| Aldrin                       | N.D.                          | 10                     |
| alpha-BHC                    | N.D.                          | 10                     |
| beta-BHC                     | N.D.                          | 10                     |
| delta-BHC                    | N.D.                          | 10                     |
| gamma-BHC                    | N.D.                          | 10                     |
| alpha-Chlordane              | N.D.                          | 10                     |
| gamma-Chlordane              | N.D.                          | 10                     |
| Chlordane                    | N.D.                          | 204                    |
| 4,4'-DDD                     | N.D.                          | 20                     |
| 4,4'-DDE                     | N.D.                          | 20                     |
| 4,4'-DDT                     | N.D.                          | 20                     |
| Dieldrin                     | N.D.                          | 20                     |
| Endosulfan I                 | N.D.                          | 10                     |
| Endosulfan II                | N.D.                          | 20                     |
| Endosulfan sulfate           | N.D.                          | 20                     |
| Endrin                       | N.D.                          | 20                     |
| Endrin aldehyde              | N.D.                          | 20                     |
| Endrin Ketone                | N.D.                          | 20                     |
| Heptachlor                   | N.D.                          | 10                     |
| Heptachlor epoxide           | N.D.                          | 10                     |
| Methoxychlor                 | N.D.                          | 102                    |
| Toxaphene                    | N.D.                          | 10,200                 |
| Surrogates:                  |                               |                        |
| Compound                     | % Recovery                    | Limits                 |
| TCMX                         | 62                            | 43-125                 |
| DCBP                         | 41                            | 41-127                 |

\*Dry Weight Basis



| Sample: Method Blank         |                              | Analyst's Initials: NS   |
|------------------------------|------------------------------|--------------------------|
| Case No.: W0408-23           |                              |                          |
| Date Collected: NA           |                              |                          |
| Sample Matrix: Soil          |                              |                          |
| Subject: Pesticides          | Date Extracted<br>4/14/11    | Date Analyzed<br>4/15/11 |
| Prep Method: EPA 3541        | 4/14/11                      | 4/13/11                  |
| Analytical Method: EPA 8081B |                              |                          |
| Compound                     | Concentration<br>ug/kg (ppb) | Reporting Limit          |
| Aldrin                       | N.D.                         | 5                        |
| alpha-BHC                    | N.D.                         | 5                        |
| beta-BHC                     | N.D.                         | 5                        |
| delta-BHC                    | N.D.                         | 5                        |
| gamma-BHC                    | N.D.                         | 5                        |
| alpha-Chlordane              | N.D.                         | 5                        |
| gamma-Chlordane              | N.D.                         | 5                        |
| Chlordane                    | N.D.                         | 100                      |
| 4,4'-DDD                     | N.D.                         | 10                       |
| 4,4'-DDE                     | N.D.                         | 10                       |
| 4,4'-DDT                     | N.D.                         | 10                       |
| Dieldrin                     | N.D.                         | 10                       |
| Endosulfan I                 | N.D.                         | 5                        |
| Endosulfan II                | N.D.                         | 10                       |
| Endosulfan sulfate           | N.D.                         | 10                       |
| Endrin                       | N.D.                         | 10                       |
| Endrin aldehyde              | N.D.                         | 10                       |
| Endrin Ketone                | N.D.                         | 10                       |
| Heptachlor                   | N.D.                         | 5                        |
| Heptachlor epoxide           | N.D.                         | 5                        |
| Methoxychlor                 | N.D.                         | 50                       |
| Toxaphene                    | N.D.                         | 5000                     |
| Surrogates:                  |                              |                          |
| Compound                     | % Recovery                   | Limits                   |
| ТСМХ                         | 53                           | 43-125                   |
| DCBP                         | 45                           | 41-127                   |



## Pesticide Laboratory Control Spike

| Date Collected: NA              |                              |                       |               |                    |
|---------------------------------|------------------------------|-----------------------|---------------|--------------------|
| Sample Matrix: Soil             |                              |                       |               |                    |
| Subject: Pesticides             | Date Extracted               |                       |               | Date Analyzed      |
| Prep Method: EPA 3541           | 4/14/11                      |                       |               | 4/15/11            |
| Analytical Method: EPA<br>8081B |                              |                       |               |                    |
| Compound                        | Amount Spiked<br>ng/mL (ppb) | Result<br>ng/mL (ppb) | Recovery<br>% | Recovery<br>Limits |
| alpha-BHC                       | 40.0                         | 21.2                  | 53            | 40-140             |
| gamma-BHC                       | 40.0                         | 21.0                  | 53            | 40-140             |
| beta-BHC                        | 40.0                         | 31.8                  | 80            | 40-140             |
| delta-BHC                       | 40.0                         | 23.9                  | 60            | 40-140             |
| Heptachlor                      | 40.0                         | 19.0                  | 48            | 40-140             |
| Aldrin                          | 40.0                         | 19.2                  | 48            | 40-140             |
| Heptachlor epoxide              | 40.0                         | 17.9                  | 45            | 40-140             |
| trans-Chlordane                 | 40.0                         | 34.8                  | 87            | 40-140             |
| cis-Chlordane                   | 40.0                         | 18.5                  | 46            | 40-140             |
| 4,4'-DDE                        | 40.0                         | 19.9                  | 50            | 40-140             |
| Endosulfan I                    | 40.0                         | 19.8                  | 50            | 40-140             |
| Dieldrin                        | 40.0                         | 27.0                  | 67            | 40-140             |
| Endrin                          | 40.0                         | 21.7                  | 54            | 40-140             |
| 4,4'-DDD                        | 40.0                         | 48.3                  | 121           | 40-140             |
| Endosulfan II                   | 40.0                         | 16.9                  | 42            | 40-140             |
| 4,4'-DDT                        | 40.0                         | 34.2                  | 85            | 40-140             |
| Endrin aldehyde                 | 40.0                         | 27.0                  | 67            | 40-140             |
| Methoxychlor                    | 40.0                         | 31.0                  | 78            | 40-140             |
| Endosulfan sulfate              | 40.0                         | 19.8                  | 50            | 40-140             |
| Endrin Ketone                   | 40.0                         | 22.0                  | 55            | 40-140             |
| Surrogates:                     |                              |                       |               |                    |
| Compound                        | % Recovery                   | Limits                |               |                    |
| TCMX                            | 66                           | 43-125                |               |                    |
| DCBP                            | 52                           | 41-127                |               |                    |

# **RESULTS: SEMIVOLATILE ORGANIC COMPOUNDS**

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.



1B

| Case No.: W0408-23         |                        | Client Name:     | Pare Corporation |   |
|----------------------------|------------------------|------------------|------------------|---|
| Method: 8270               |                        | Lab Sample ID:   | SS# 1            |   |
| Matrix: (soil/water/air) S | OIL                    | Lab File ID:     | B041320.D        |   |
| Sample wt/vol: 20.         | Date Sampled:          | 4/8/2011         |                  |   |
| Level: (low/med) LO        | W                      | Date Extracted:  | 4/13/2011        |   |
| % Moisture: 76.26          |                        | Date Analyzed:   | 4/13/2011        | _ |
| Concentrated Extract Volu  | ume: <u>1000</u> (uL)  | Dilution Factor: | 1.0              | _ |
| Injection Volume: 1.0      | (uL)                   |                  |                  |   |
| Analyst's Initials:        | _                      |                  |                  |   |
| CAS NO.                    | COMPOUND               | UNITS:           | UG/KG            | Q |
| 91-20-3                    | Naphthalene            |                  | 200              | U |
| 91-57-6                    | 2-Methylnaphthalene    |                  | 200              | U |
| 208-96-8                   | Acenaphthylene         |                  | 200              | U |
| 83-32-9                    | Acenaphthene           |                  | 200              | U |
| 132-64-9                   | Dibenzofuran           |                  | 200              | U |
| 86-73-7                    | Fluorene               |                  | 200              | U |
| 85-01-8                    | Phenanthrene           |                  | 200              | U |
| 120-12-7                   | Anthracene             |                  | 200              | U |
| 206-44-0                   | Fluoranthene           |                  | 200              | U |
| 129-00-0                   | Pyrene                 |                  | 200              | U |
| 56-55-3                    | Benzo(a)anthracene     |                  | 200              | U |
| 218-01-9                   | Chrysene               |                  | 200              | U |
| 205-99-2                   | Benzo(b)fluoranthene   |                  | 200              | U |
| 207-08-9                   | Benzo(k)fluoranthene   |                  | 200              | U |
| 50-32-8                    | Benzo(a)pyrene         |                  | 200              | U |
| 193-39-5                   | Indeno(1,2,3-cd)pyrene |                  | 200              | U |
| 53-70-3                    | Dibenz(a,h)anthracene  |                  | 200              | U |

Benzo(g,h,i)perylene

191-24-2

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank New England Testing Laboratory, Inc.

200

U



1B

| Case No.: W0408-23         |                        | Client Name:     | Pare Corporation |   |
|----------------------------|------------------------|------------------|------------------|---|
| Method: 8270               |                        | Lab Sample ID:   | SBLK110413       |   |
| Matrix: (soil/water/air) S | OIL                    | Lab File ID:     | B041303.D        |   |
| Sample wt/vol: 20          | (g/ml) <u>G</u>        | Date Sampled:    | 4/8/2011         | - |
| Level: (low/med) LO        | W                      | Date Extracted:  |                  | - |
| % Moisture: 0              |                        | Date Analyzed:   | 4/13/2011        |   |
| Concentrated Extract Volu  | ume: <u>1000</u> (uL)  | Dilution Factor: | 1.0              |   |
| Injection Volume: 1.0      | (uL)                   |                  |                  |   |
| Analyst's Initials:        | _                      |                  |                  |   |
| CAS NO.                    | COMPOUND               | UNITS:           | UG/KG            | Q |
| 91-20-3                    | Naphthalene            |                  | 50               | U |
| 91-57-6                    | 2-Methylnaphthalene    |                  | 50               | U |
| 208-96-8                   | Acenaphthylene         |                  | 50               | U |
| 83-32-9                    | Acenaphthene           |                  | 50               | U |
| 132-64-9                   | Dibenzofuran           |                  | 50               | U |
| 86-73-7                    | Fluorene               |                  | 50               | U |
| 85-01-8                    | Phenanthrene           |                  | 50               | U |
| 120-12-7                   | Anthracene             |                  | 50               | U |
| 206-44-0                   | Fluoranthene           |                  | 50               | U |
| 129-00-0                   | Pyrene                 |                  | 50               | U |
| 56-55-3                    | Benzo(a)anthracene     |                  | 50               | U |
| 218-01-9                   | Chrysene               |                  | 50               | U |
| 205-99-2                   | Benzo(b)fluoranthene   |                  | 50               | U |
| 207-08-9                   | Benzo(k)fluoranthene   |                  | 50               | U |
| 50-32-8                    | Benzo(a)pyrene         |                  | 50               | U |
| 193-39-5                   | Indeno(1,2,3-cd)pyrene |                  | 50               | U |
| 53-70-3                    | Dibenz(a,h)anthracene  |                  | 50               | U |

Benzo(g,h,i)perylene

191-24-2

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank New England Testing Laboratory, Inc.

50

U



### 

SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name: New England Testing Lab

Case No.: W0408-23

Lab Code: RI010

Client Name: Pare Corporation

Level: (low/med) LOW

|    |            | S1 | S2 | S3 | TOT |
|----|------------|----|----|----|-----|
|    | Sample ID  | #  | #  | #  | OUT |
| 01 | SBLK110413 | 65 | 72 | 44 | 0   |
| 02 | SLCS110413 | 79 | 75 | 57 | 0   |
| 03 | SS# 1      | 78 | 89 | 64 | 0   |

|    |   |                  | QC LIMITS |
|----|---|------------------|-----------|
| S1 | = | Nitrobenzene-d5  | (12-110)  |
| S2 | = | 2-Fluorobiphenyl | (17-122)  |
| S3 | = | Terphenyl-d14    | (10-139)  |

- # Column to be used to flag recovery values
- \* Values outside of contract required QC limits
- D Surrogate diluted out

### Semivolatile Soil Laboratory Control Spike

| Date Extracted: | 4/13/2011 |
|-----------------|-----------|
| Date Analyzed:  | 4/13/2011 |

|                        | Amount Spiked | Result, | Recovery | Lower Recovery | Upper Recovery |
|------------------------|---------------|---------|----------|----------------|----------------|
|                        | ug/Kg         | ug/Kg   | %        | Limit          | Limit          |
| Naphthalene            | 2500          | 2031    | 81       | 27             | 100            |
| 2-Methylnaphthalene    | 2500          | 1976    | 79       | 28             | 100            |
| Acenaphthylene         | 2500          | 1897    | 76       | 35             | 109            |
| Acenaphthene           | 2500          | 1895    | 76       | 32             | 108            |
| Dibenzofuran           | 2500          | 1910    | 76       | 32             | 111            |
| Fluorene               | 2500          | 1949    | 78       | 31             | 116            |
| Phenanthrene           | 2500          | 2139    | 86       | 41             | 118            |
| Anthracene             | 2500          | 2119    | 85       | 30             | 119            |
| Fluoranthene           | 2500          | 1900    | 76       | 35             | 120            |
| Pyrene                 | 2500          | 2709    | 108      | 46             | 112            |
| Benzo(a)anthracene     | 2500          | 2567    | 103      | 45             | 114            |
| Chrysene               | 2500          | 1966    | 79       | 33             | 123            |
| Benzo(b)fluoranthene   | 2500          | 2405    | 96       | 33             | 122            |
| Benzo(k)fluoranthene   | 2500          | 2195    | 88       | 34             | 130            |
| Benzo(a)pyrene         | 2500          | 2202    | 88       | 37             | 115            |
| Indeno(1,2,3-cd)pyrene | 2500          | 2553    | 102      | 27             | 143            |
| Dibenz(a,h)anthracene  | 2500          | 2496    | 100      | 33             | 137            |
| Benzo(g,h,i)perylene   | 2500          | 2363    | 95       | 16             | 152            |

# **RESULTS: VOLATILE ORGANIC COMPOUNDS**

The presence of the NETLAB LOGO in the top right corner of each page in this section indicates:

The Technical Manager of the Organics Analysis Department certifies that the samples included in this section have been prepared and analyzed using the procedures cited and that the results have been reviewed and approved. Any exceptions or qualifications of substance have been reported in the case narrative.



| Case No.: W0408-23                         | Client Name: Pare Corporation |
|--------------------------------------------|-------------------------------|
| Method: 8260                               | Lab Sample ID: SS #1          |
| Matrix: (soil/water) SOIL                  | Lab File ID: C041144.D        |
| Sample wt/vol: <u>13.2</u> (g/ml) <u>G</u> | Date Sampled: 4/8/2011        |
| % Moisture 76.26                           | Date Analyzed: 4/12/2011      |
| Soil Extract Volume: (uL)                  | Dilution Factor: <u>1.0</u>   |
| Analyst's Initials:                        | Soil Aliquot Volume: (uL)     |

| CAS NO.    | COMPOUND                  | UNITS: | UG/KG | Q |
|------------|---------------------------|--------|-------|---|
| 75-01-4    | Vinyl Chloride            |        | 160   | U |
| 74-83-9    | Bromomethane              |        | 160   | U |
| 75-00-3    | Chloroethane              |        | 160   | U |
| 67-64-1    | Acetone                   |        | 790   | U |
| 75-35-4    | 1,1-Dichloroethene        |        | 160   | U |
| 75-15-0    | Carbon Disulfide          |        | 160   | U |
| 75-09-2    | Methylene Chloride        |        | 160   | U |
| 1634-04-4  | tert-Butyl methyl ether   |        | 160   | U |
| 156-60-5   | trans-1,2 Dichloroethene  |        | 160   | U |
| 75-34-3    | 1,1-Dichloroethane        |        | 160   | U |
| 78-93-3    | 2-Butanone                |        | 790   | U |
| 594-20-7   | 2,2-Dichloropropane       |        | 160   | U |
| 156-59-2   | cis-1,2-Dichloroethene    |        | 160   | U |
| 67-66-3    | Chloroform                |        | 160   | U |
| 74-97-5    | Bromochloromethane        |        | 160   | U |
| 71-55-6    | 1,1,1-Trichloroethane     |        | 160   | U |
| 563-58-6   | 1,1-Dichloropropene       |        | 160   | U |
| 56-23-5    | Carbon Tetrachloride      |        | 160   | U |
| 71-43-2    | Benzene                   |        | 160   | U |
| 107-06-2   | 1,2-Dichloroethane        |        | 160   | U |
| 79-01-6    | Trichloroethene           |        | 160   | U |
| 78-87-5    | 1,2-Dichloropropane       |        | 160   | U |
| 75-27-4    | Bromodichloromethane      |        | 160   | U |
| 74-95-3    | Dibromomethane            |        | 160   | U |
| 108-10-1   | 4-Methyl-2-pentanone      |        | 790   | U |
| 106-93-4   | Ethylene Dibromide        |        | 160   | U |
| 10061-01-5 | cis-1,3-Dichloropropene   |        | 160   | U |
| 108-88-3   | Toluene                   |        | 160   | U |
| 10061-02-6 | Trans-1,3-Dichloropropene |        | 160   | U |
| 79-00-5    | 1,1,2-Trichloroethane     |        | 160   | U |
| 591-78-6   | 2-Hexanone                |        | 790   | U |
| 127-18-4   | Tetrachloroethene         |        | 160   | U |
| 124-48-1   | Chlorodibromomethane      |        | 160   | U |
| 108-90-7   | Chlorobenzene             |        | 160   | U |
| 630-20-6   | 1,1,1,2-Tetrachloroethane |        | 160   | U |

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank



| Case No.: W0408-23                         | Client Name:      | Pare Corporation |      |
|--------------------------------------------|-------------------|------------------|------|
| Method: 8260                               | Lab Sample ID:    | SS #1            |      |
| Matrix: (soil/water) SOIL                  | Lab File ID:      | C041144.D        |      |
| Sample wt/vol: <u>13.2</u> (g/ml) <u>G</u> | Date Sampled:     | 4/8/2011         |      |
| % Moisture 76.26                           | Date Analyzed:    | 4/12/2011        |      |
| Soil Extract Volume: (uL)                  | Dilution Factor:  | 1.0              |      |
| Analyst's Initials:                        | Soil Aliquot Volu | ıme:             | (uL) |

| CAS NO.   | COMPOUND                    | UNITS: UG/KG | Q |
|-----------|-----------------------------|--------------|---|
| 100-41-4  | Ethylbenzene                | 160          | U |
| 1330-20-7 | m & p-Xylene                | 320          | U |
| 95-47-6   | o-Xylene                    | 160          | U |
| 100-42-5  | Styrene                     | 160          | U |
| 75-25-2   | Bromoform                   | 160          | U |
| 98-82-8   | Isopropylbenzene            | 160          | U |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 160          | U |
| 108-86-1  | Bromobenzene                | 160          | U |
| 96-18-4   | 1,2,3-Trichloropropane      | 160          | U |
| 95-49-8   | 2-Chlorotoluene             | 160          | U |
| 103-65-1  | n-Propylbenzene             | 160          | U |
| 108-67-8  | 1,3,5-Trimethylbenzene      | 160          | U |
| 106-43-4  | 4-Chlorotoluene             | 160          | U |
| 98-06-6   | tert-Butylbenzene           | 160          | U |
| 95-63-6   | 1,2,4-Trimethylbenzene      | 160          | U |
| 135-98-8  | sec-Butylbenzene            | 160          | U |
| 99-87-6   | p-Isopropyltoluene          | 160          | U |
| 75-87-3   | Chloromethane               | 160          | U |
| 75-65-0   | tert butyl alcohol          | 160          | U |
| 541-73-1  | 1,3-Dichlorobenzene         | 160          | U |
| 109-99-9  | Tetrahydrofuran             | 160          | U |
| 106-46-7  | 1,4-Dichlorobenzene         | 160          | U |
| 60-29-7   | Diethyl Ether               | 160          | U |
| 104-51-8  | n-Butylbenzene              | 160          | U |
| 95-50-1   | 1,2-Dichlorobenzene         | 160          | U |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 160          | U |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 160          | U |
| 87-68-3   | Hexachlorobutadiene         | 160          | U |
| 91-20-3   | Naphthalene                 | 160          | U |
| 87-61-6   | 1,2,3-Trichlorobenzene      | 160          | U |

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank



| Case No.: W0408-23           | Client Name: Pare Corporation |
|------------------------------|-------------------------------|
| Method: 8260                 | Lab Sample ID: VBLK041111     |
| Matrix: (soil/water) SOIL    | Lab File ID: C041128.D        |
| Sample wt/vol: 10.0 (g/ml) G | Date Sampled: 4/8/2011        |
| % Moisture 0                 | Date Analyzed: 4/11/2011      |
| Soil Extract Volume: (uL)    | Dilution Factor: <u>1.0</u>   |
| Analyst's Initials:          | Soil Aliquot Volume: (uL)     |

| CAS NO.    | COMPOUND                  | UNITS: | UG/KG | Q |
|------------|---------------------------|--------|-------|---|
| 75-01-4    | Vinyl Chloride            |        | 50    | U |
| 74-83-9    | Bromomethane              |        | 50    | U |
| 75-00-3    | Chloroethane              |        | 50    | U |
| 67-64-1    | Acetone                   |        | 250   | U |
| 75-35-4    | 1,1-Dichloroethene        |        | 50    | U |
| 75-15-0    | Carbon Disulfide          |        | 50    | U |
| 75-09-2    | Methylene Chloride        |        | 50    | U |
| 1634-04-4  | tert-Butyl methyl ether   |        | 50    | U |
| 156-60-5   | trans-1,2 Dichloroethene  |        | 50    | U |
| 75-34-3    | 1,1-Dichloroethane        |        | 50    | U |
| 78-93-3    | 2-Butanone                |        | 250   | U |
| 594-20-7   | 2,2-Dichloropropane       |        | 50    | U |
| 156-59-2   | cis-1,2-Dichloroethene    |        | 50    | U |
| 67-66-3    | Chloroform                |        | 50    | U |
| 74-97-5    | Bromochloromethane        |        | 50    | U |
| 71-55-6    | 1,1,1-Trichloroethane     |        | 50    | U |
| 563-58-6   | 1,1-Dichloropropene       |        | 50    | U |
| 56-23-5    | Carbon Tetrachloride      |        | 50    | U |
| 71-43-2    | Benzene                   |        | 50    | U |
| 107-06-2   | 1,2-Dichloroethane        |        | 50    | U |
| 79-01-6    | Trichloroethene           |        | 50    | U |
| 78-87-5    | 1,2-Dichloropropane       |        | 50    | U |
| 75-27-4    | Bromodichloromethane      |        | 50    | U |
| 74-95-3    | Dibromomethane            |        | 50    | U |
| 108-10-1   | 4-Methyl-2-pentanone      |        | 250   | U |
| 106-93-4   | Ethylene Dibromide        |        | 50    | U |
| 10061-01-5 | cis-1,3-Dichloropropene   |        | 50    | U |
| 108-88-3   | Toluene                   |        | 50    | U |
| 10061-02-6 | Trans-1,3-Dichloropropene |        | 50    | U |
| 79-00-5    | 1,1,2-Trichloroethane     |        | 50    | U |
| 591-78-6   | 2-Hexanone                |        | 250   | U |
| 127-18-4   | Tetrachloroethene         |        | 50    | U |
| 124-48-1   | Chlorodibromomethane      |        | 50    | U |
| 108-90-7   | Chlorobenzene             |        | 50    | U |
| 630-20-6   | 1,1,1,2-Tetrachloroethane |        | 50    | U |

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank



| Case No.: W0408-23           | Client Name: Pare Corporation |
|------------------------------|-------------------------------|
| Method: 8260                 | Lab Sample ID: VBLK041111     |
| Matrix: (soil/water) SOIL    | Lab File ID: C041128.D        |
| Sample wt/vol: 10.0 (g/ml) G | Date Sampled: 4/8/2011        |
| % Moisture 0                 | Date Analyzed: 4/11/2011      |
| Soil Extract Volume: (uL)    | Dilution Factor: <u>1.0</u>   |
| Analyst's Initials:          | Soil Aliquot Volume: (uL)     |

| CAS NO.   | AS NO. COMPOUND UNI         |                 | UG/KG | Q |  |  |
|-----------|-----------------------------|-----------------|-------|---|--|--|
| 100-41-4  | Ethylbenzene                | Ethylbenzene 50 |       |   |  |  |
| 1330-20-7 | m & p-Xylene                |                 |       |   |  |  |
| 95-47-6   | o-Xylene                    |                 | U     |   |  |  |
| 100-42-5  | Styrene                     |                 | 50    | U |  |  |
| 75-25-2   | Bromoform                   |                 | 50    | U |  |  |
| 98-82-8   | Isopropylbenzene            |                 | 50    | U |  |  |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   |                 | 50    | U |  |  |
| 108-86-1  | Bromobenzene                | nzene 50        |       |   |  |  |
| 96-18-4   | 1,2,3-Trichloropropane      |                 | 50    | U |  |  |
| 95-49-8   | 2-Chlorotoluene             |                 | 50    | U |  |  |
| 103-65-1  | n-Propylbenzene             |                 | 50    | U |  |  |
| 108-67-8  | 1,3,5-Trimethylbenzene      |                 | 50    | U |  |  |
| 106-43-4  | 4-Chlorotoluene             |                 | 50    | U |  |  |
| 98-06-6   | tert-Butylbenzene           |                 | 50    | U |  |  |
| 95-63-6   | 1,2,4-Trimethylbenzene      |                 | 50    | U |  |  |
| 135-98-8  | sec-Butylbenzene            |                 | 50    | U |  |  |
| 99-87-6   | p-Isopropyltoluene          |                 | 50    | U |  |  |
| 75-87-3   | Chloromethane               |                 | 50    | U |  |  |
| 75-65-0   | tert butyl alcohol          |                 | 50    | U |  |  |
| 541-73-1  | 1,3-Dichlorobenzene         |                 | 50    | U |  |  |
| 109-99-9  | Tetrahydrofuran             |                 | 50    | U |  |  |
| 106-46-7  | 1,4-Dichlorobenzene         |                 | 50    | U |  |  |
| 60-29-7   | Diethyl Ether               |                 | 50    | U |  |  |
| 104-51-8  | n-Butylbenzene              |                 | 50    | U |  |  |
| 95-50-1   | 1,2-Dichlorobenzene         |                 | 50    | U |  |  |
| 96-12-8   | 1,2-Dibromo-3-chloropropane |                 | 50    | U |  |  |
| 120-82-1  | 1,2,4-Trichlorobenzene      |                 | 50    | U |  |  |
| 87-68-3   | Hexachlorobutadiene         |                 | 50    | U |  |  |
| 91-20-3   | Naphthalene                 |                 | 50    | U |  |  |
| 87-61-6   | 1,2,3-Trichlorobenzene      |                 | 50    | U |  |  |

U=not detected, D=diluted, E=over range (another data sheet is included), J=below limit, B=found in blank

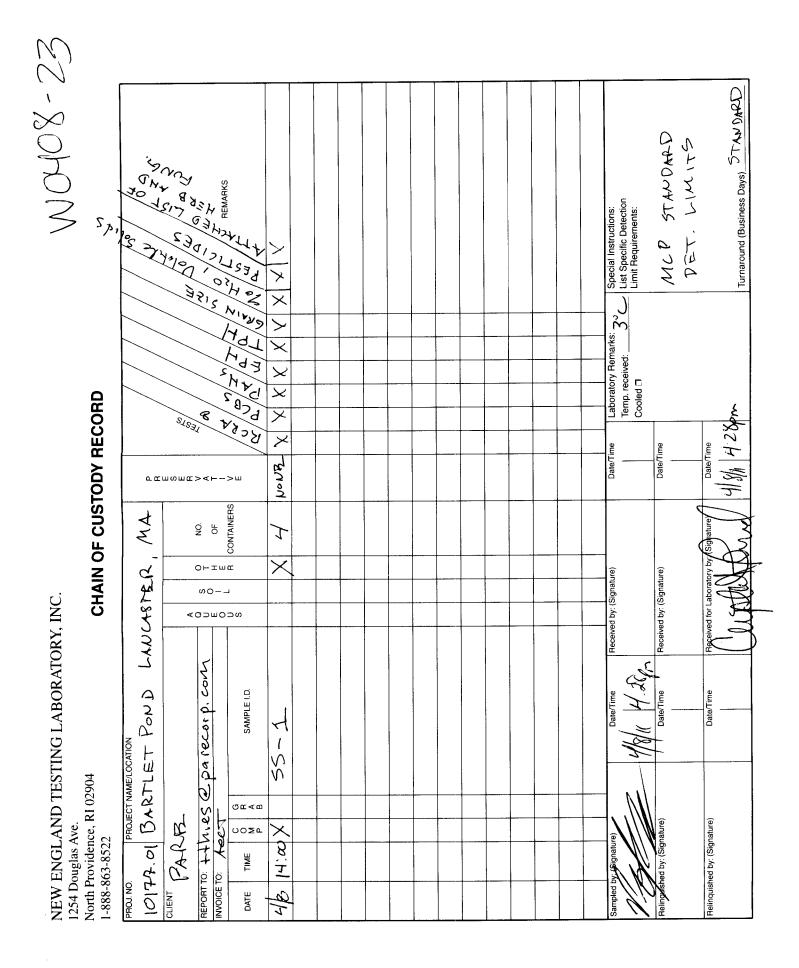


### SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

|    | EPA        | SMC1 | SMC2 | SMC3 | тот |
|----|------------|------|------|------|-----|
|    | SAMPLE NO. | #    | #    | #    | OUT |
| 01 | LCS041111  | 98   | 104  | 110  | 0   |
| 02 | LCSD041111 | 99   | 104  | 106  | 0   |
| 03 | VBLK041111 | 91   | 98   | 97   | 0   |
| 04 | SS#1       | 92   | 91   | 93   | 0   |

| SMC1 | = | 4-Bromofluorobenzene  | (70-130) |
|------|---|-----------------------|----------|
| SMC2 | = | Toluene-D8            | (70-130) |
| SMC3 | = | 1,2-Dichloroethane-D4 | (70-130) |
|      |   |                       |          |

- # Column to be used to flag recovery values
- \* Values outside of contract required QC limits
- D System Monitoring Compound diluted out


New England Testing Laboratory, Inc.

QC LIMITS

### Volatile Organics LCS and LCSD Duplicate Results

#### LCS041111

|                                                    | LCS        | LCS             | Recovery,  |            | LCSD            | •          | , Recovery         |              | RPD,        | RPD          |
|----------------------------------------------------|------------|-----------------|------------|------------|-----------------|------------|--------------------|--------------|-------------|--------------|
| Compound                                           | True Value | Result          | %          | True Value | Result          | %          | QC Limits          | Units        | %           | Limits       |
| Dichlorodifluoromethane                            | 50         | 51.95           | 104        | 50         | 50.26           | 101        | 70-130%            | ug/L         | 3.3         | 20.0         |
| Chloromethane<br>Vinyl Chlorida                    | 50<br>50   | 47.63<br>51.85  | 95<br>104  | 50<br>50   | 45.94<br>50.04  | 92<br>100  | 70-130%<br>70-130% | ug/L         | 3.6<br>3.6  | 20.0<br>20.0 |
| Vinyl Chloride<br>Bromomethane                     | 50<br>50   | 53.11           | 104        | 50<br>50   | 44.59           | 89         | 70-130%            | ug/L<br>ug/L | 5.0<br>17.4 | 20.0         |
| Chloroethane                                       | 50         | 46.57           | 93         | 50         | 41.44           | 83         | 70-130%            | ug/L         | 11.7        | 20.0         |
| Trichlorofluoromethane                             | 50         | 45.36           | 91         | 50         | 40.91           | 82         | 70-130%            | ug/L         | 10.3        | 20.0         |
| 1,1-Dichloroethene                                 | 50         | 52.15           |            | 50         | 49.08           | 98         | 70-130%            | ug/L         | 6           | 20.0         |
| Carbon Disulfide                                   | 50         | 52.75           | 106        | 50         | 48.22           | 96         | 70-130%            | ug/L         | 9.0         | 20.0         |
| Methylene Chloride<br>Acetone                      | 50<br>50   | 50.58<br>50.2   |            | 50<br>50   | 49.07<br>48.48  | 98<br>97   | 70-130%<br>70-130% | ug/L<br>ug/L | 3.0<br>3.5  | 20.0<br>20.0 |
| Trans-1,2-dichloroethene                           | 50         | 50.21           | 100        | 50         | 49.72           | 99         | 70-130%            | ug/L<br>ug/L | 3.3<br>1.0  | 20.0         |
| Tert-butyl Methyl Ether                            | 50         | 52.2            |            | 50         | 50.32           | 101        | 70-130%            | ug/L         | 3.7         | 20.0         |
| Diisopropyl Ether                                  | 50         | 50.87           | 102        | 50         | 47.34           | 95         | 70-130%            | ug/L         | 7.2         | 20.0         |
| 1,1-Dichloroethane                                 | 50         | 51.74           |            | 50         | 50.1            | 100        | 70-130%            | ug/L         | 3.2         | 20.0         |
| Ethyl Tery-butyl Ether                             | 50         | 50.29           | 101        | 50         | 47.58           | 95<br>101  | 70-130%            | ug/L         | 5.5         | 20.0         |
| Cis-1,2-dichloroethene<br>2,2-Dichloropropane      | 50<br>50   | 51.18<br>47.9   | 102<br>96  | 50<br>50   | 50.69<br>48.22  | 101<br>96  | 70-130%<br>70-130% | ug/L<br>ug/L | 1.0<br>0.7  | 20.0<br>20.0 |
| Bromochloromethane                                 | 50         | 51.02           |            | 50         | 48.22           | 100        | 70-130%            | ug/L<br>ug/L | 2.1         | 20.0         |
| Chloroform                                         | 50         | 51.62           |            | 50         | 50.48           | 101        | 70-130%            | ug/L         | 2.2         | 20.0         |
| Carbon Tetrachloride                               | 50         | 50.27           | 101        | 50         | 51.55           | 103        | 70-130%            | ug/L         | 2.5         | 20.0         |
| 1,1,1-Trichloroethane                              | 50         | 52.95           |            | 50         | 51.77           | 104        | 70-130%            | ug/L         | 2.3         | 20.0         |
| 2-Butanone                                         | 50         | 57.18           |            | 50         | 53.61           | 107        | 70-130%            | ug/L         | 6.4         | 20.0         |
| 1,1-Dichloropropene                                | 50<br>50   | 53.96<br>55.49  |            | 50<br>50   | 51.77<br>55.59  | 104<br>111 | 70-130%            | ug/L         | 4.1<br>0.2  | 20.0<br>20.0 |
| Benzene<br>Tert-butyl Alcohol                      | 50<br>50   | 48.58           |            | 50<br>50   | 55.62           | 111        | 70-130%<br>70-130% | ug/L<br>ug/L | 0.2<br>13.5 | 20.0         |
| Tert-amyl Methyl Ether                             | 50         | 52.37           | 105        | 50         | 52.65           | 105        | 70-130%            | ug/L         | 0.5         | 20.0         |
| 1,2-Dichloroethane                                 | 50         | 50.42           |            | 50         | 53              | 106        | 70-130%            | ug/L         | 5.0         | 20.0         |
| Trichloroethene                                    | 50         | 52.67           | 105        | 50         | 52.3            | 105        | 70-130%            | ug/L         | 0.7         | 20.0         |
| Dibromomethane                                     | 50         | 56.47           | 113        | 50         | 55.56           | 111        | 70-130%            | ug/L         | 1.6         | 20.0         |
| 1,2-Dichloropropane<br>Bromodichloromethane        | 50         | 53.49           | 107        | 50         | 53.49<br>50.89  | 107        | 70-130%            | ug/L         | 0.0         | 20.0         |
| Cis-1,3-dichloropropene                            | 50<br>50   | 51.43<br>53.41  | 103<br>107 | 50<br>50   | 50.89           | 102<br>103 | 70-130%<br>70-130% | ug/L<br>ug/L | 1.1<br>3.6  | 20.0<br>20.0 |
| 2-CEVE                                             | 50         | 53.45           | 107        | 50         | 53.02           | 105        | 70-130%            | ug/L         | 0.8         | 20.0         |
| Toluene                                            | 50         | 53.47           | 107        | 50         | 51.85           | 104        | 70-130%            | ug/L         | 3.1         | 20.0         |
| 4-Methyl-2-Pentanone                               | 50         | 53.95           |            | 50         | 53.04           | 106        | 70-130%            | ug/L         | 1.7         | 20.0         |
| Tetrachloroethene                                  | 50         | 53.47           | 107        | 50         | 52.84           | 106        | 70-130%            | ug/L         | 1.2         | 20.0         |
| Trans-1,3-Dichloropropene<br>1,1,2-Trichloroethane | e 50<br>50 | 51.22<br>53.73  | 102<br>107 | 50<br>50   | 49.46<br>51.86  | 99<br>104  | 70-130%            | ug/L         | 3.5<br>3.5  | 20.0<br>20.0 |
| Dibromochloromethane                               | 50<br>50   | 50.74           |            | 50<br>50   | 49.79           | 104        | 70-130%<br>70-130% | ug/L<br>ug/L | 5.5<br>1.9  | 20.0         |
| 1,3-Dichloropropane                                | 50         | 52.79           | 101        | 50         | 51.29           | 103        | 70-130%            | ug/L         | 2.9         | 20.0         |
| 1,2-Dibromoethane                                  | 50         | 52.6            | 105        | 50         | 51.52           | 103        | 70-130%            | ug/L         | 2.1         | 20.0         |
| 2-Hexanone                                         | 50         | 52.37           | 105        | 50         | 54.25           | 109        | 70-130%            | ug/L         | 3.5         | 20.0         |
| Chlorobenzene                                      | 50         | 52.97           | 106        | 50         | 52.73           | 105        | 70-130%            | ug/L         | 0.5         | 20.0         |
| Ethylbenzene<br>m,p-Xylene                         | 50<br>100  | 51.12<br>101.08 | 102<br>101 | 50<br>100  | 49.43<br>102.77 | 99<br>103  | 70-130%            | ug/L         | 3.4<br>1.7  | 20.0<br>20.0 |
| 1,1,1,2-Tetrachloroethane                          | 50         | 50.2            | 101        | 50         | 49.95           | 103        | 70-130%<br>70-130% | ug/L<br>ug/L | 0.5         | 20.0         |
| o-Xylene                                           | 50         | 48.98           | 98         | 50         | 51.35           | 103        | 70-130%            | ug/L         | 4.7         | 20.0         |
| Styrene                                            | 50         | 48.94           | 98         | 50         | 49.97           | 100        | 70-130%            | ug/L         | 2.1         | 20.0         |
| Bromoform                                          | 50         | 47.84           | 96         | 50         | 49.36           | 99         | 70-130%            | ug/L         | 3.1         | 20.0         |
| Isopropylbenzene                                   | 50         | 48.85           | 98<br>99   | 50         | 49.26           | 99<br>102  | 70-130%            | ug/L         | 0.8         | 20.0         |
| Bromobenzene<br>n-Propylbenzene                    | 50<br>50   | 49.41<br>48.66  |            | 50<br>50   | 50.97<br>49.09  | 102<br>98  | 70-130%<br>70-130% | ug/L<br>ug/L | 3.1<br>0.9  | 20.0<br>20.0 |
| 1,1,2,2-Tetrachloroethene                          | 50         | 46.41           |            | 50         | 54.41           | 109        | 70-130%            | ug/L<br>ug/L | 15.9        | 20.0         |
| 2-Chlorotoluene                                    | 50         | 50.19           |            | 50         | 52.65           | 105        | 70-130%            | ug/L         | 4.8         | 20.0         |
| 1,2,3-Trichloropropane                             | 50         | 46.69           |            | 50         | 47.54           | 95         | 70-130%            | ug/L         | 1.8         | 20.0         |
| 1,3,5-Trimethylbenzene                             | 50         | 48.42           |            | 50         | 49.88           | 100        | 70-130%            | ug/L         | 3.0         | 20.0         |
| 4-Chlorotoluene                                    | 50         | 51.19           |            | 50         | 53.19           | 106        | 70-130%            | ug/L         | 3.8         | 20.0         |
| Tert-butylbenzene<br>1,2,4-Trimethylbenzene        | 50<br>50   | 48.99<br>48.76  |            | 50<br>50   | 48.4<br>49.69   | 97<br>99   | 70-130%<br>70-130% | ug/L<br>ug/L | 1.2<br>1.9  | 20.0<br>20.0 |
| Sec-butylbenzene                                   | 50         | 48.70           |            | 50         | 51.28           | 103        | 70-130%            | ug/L<br>ug/L | 5.4         | 20.0         |
| p-Isopropyltoluene                                 | 50         | 49.83           |            | 50         | 49.4            | 99         | 70-130%            | ug/L         | 0.9         | 20.0         |
| 1,3-Dichlorobenzene                                | 50         | 51.03           |            | 50         | 50.64           | 101        | 70-130%            | ug/L         | 0.8         | 20.0         |
| 1,4-Dichlorobenzene                                | 50         | 52.43           |            | 50         | 52.15           | 104        | 70-130%            | ug/L         | 0.5         | 20.0         |
| n-Butyl Bezene                                     | 50         | 52.24           |            | 50         | 51.37           |            | 70-130%            | ug/L         | 1.7         | 20.0         |
| 1,2-Dichlorbenzene<br>1,2-Dibromo-3-chloropr       | 50<br>50   | 54.2            |            | 50<br>50   | 53.39           |            | 70-130%            | ug/L         | 1.5         | 20.0         |
| 1,2-Dibromo-3-chloropr<br>Hexachlorobutadiene      | 50<br>50   | 51.81<br>54.92  | 104<br>110 | 50<br>50   | 52.83<br>55.15  | 106<br>110 | 70-130%<br>70-130% | ug/L<br>ug/L | 1.9<br>0.4  | 20.0<br>20.0 |
| 1,2,4-Trichlorobenzene                             | 50         | 55.79           |            | 50         | 56.36           |            | 70-130%            | ug/L<br>ug/L | 1.0         | 20.0         |
| Naphthalene                                        | 50         | 54.71           |            | 50         | 55.13           |            | 70-130%            | ug/L         | 0.8         | 20.0         |
| 1,2,3-Trichlorobenzene                             | 50         | 53.36           | 107        | 50         | 54.46           | 109        | 70-130%            | ug/L         | 2.0         | 20.0         |
|                                                    |            |                 |            |            |                 |            |                    |              |             |              |



| CHEMICAL NAME | CAS NUMBER |  |  |  |
|---------------|------------|--|--|--|
|               | 87-86-5    |  |  |  |
| DICAMBRA      | 62610-39-3 |  |  |  |
| 2,4-D         | 94-75-7    |  |  |  |
| DICHLOROPROP  | 7547-66-2  |  |  |  |
|               | 94-74-6    |  |  |  |
|               | 93-65-2    |  |  |  |
|               | 1918-02-1  |  |  |  |
| SILVEX        | 93-72-1    |  |  |  |
| 2,4,5-T       | 93-76-5    |  |  |  |
|               | 94128-04-8 |  |  |  |
| DINOSEB       | 89396-94-1 |  |  |  |
| 2,4-DB        | 94-80-4    |  |  |  |
| dalapon       |            |  |  |  |

.